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Mining dense subgraphs in a bipartite graph is a fundamental task in bipartite graph analysis, with numerous

applications in community detection, fraud detection, and e-commerce recommendation. Existing dense

subgraph models, such as biclique, 𝑘-biplex, 𝑘-bitruss, and (𝛼, 𝛽)-core, often face challenges due to their

high computational complexity or limitations in effectively capturing the density of the graph. To overcome

these issues, in this paper, we propose a new dense subgraph model for bipartite graphs, namely (𝛼, 𝛽)-dense
subgraph, designed to capture the density structure inherent in bipartite graphs. We show that all (𝛼, 𝛽)-dense
subgraphs are nested within each other, forming a hierarchical density decomposition of the bipartite graph.

To efficiently compute the (𝛼, 𝛽)-dense subgraph, we develop a novel network flow algorithm with a carefully-

designed core pruning technique. The time complexity of our algorithm is𝑂(∣𝐸∣+ ∣𝐸(𝑅)∣1.5), where ∣𝐸∣ denotes
the number of edges and ∣𝐸(𝑅)∣ is the number of edges of the pruned graph, often significantly smaller than ∣𝐸∣.
Armed with this algorithm, we also propose a novel and efficient divide-and-conquer algorithm to compute

the entire density decomposition of the bipartite graph within𝑂(𝑝 ⋅ log𝑑max ⋅ ∣𝐸∣1.5) time, where 𝑝 is typically

a small constant in real-world bipartite graphs and 𝑑max is the maximum degree. Extensive experiments and

case studies on 11 real-world datasets demonstrate the effectiveness of our (𝛼, 𝛽)-dense subgraph model and

the high efficiency and scalability of our proposed algorithms.
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1 Introduction
A bipartite graph is a basic structure in which vertices are divided into two disjoint sets representing

different types of entities, with edges connecting vertices in these sets to represent connections

between entities. In the real world, bipartite graphs are ubiquitous, appearing in contexts such as
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𝐶𝐶4,2 = 𝐶𝐶3,3 = ∅
(a) Example graph 1
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(b) Example graph 2

Fig. 1. Example graphs with different models.

online user-item networks [14, 34], gene co-expression networks [40], social networks [6], and so

on. Mining dense subgraphs in bipartite graphs is a fundamental technique in graph analysis with

numerous applications across various fields. For instance, in user-item networks, dense subgraphs

are crucial for e-commerce recommendations [3, 11, 18, 39], as customers with similar purchasing

habits often belong to the same community and are grouped within dense subgraphs. In gene

co-expression networks, dense subgraphs typically contain co-expressed gene modules, revealing

regulatory networks and aiding in identifying functionally related gene groups [40]. In social

networks, dense subgraphs play a key role in fraud detection [2, 7], as fraudulent activities often

tend to form unusually dense subgraphs.

Various models have been proposed to characterize dense subgraphs in bipartite graphs. Notable

examples include maximal biclique [1, 20, 23, 26, 40], 𝑘-biplex [15, 37, 38], 𝑘-bitruss [29, 30, 35, 42],

and (𝛼, 𝛽)-core [12, 17, 19, 22, 25]. However, all these existing models often face challenges due to

their high computational complexity or limitations in effectively capturing the density of the graph.

Specifically, the maximal biclique and 𝑘-biplex models do not have polynomial-time algorithms,

making them intractable for large graphs. For 𝑘-bitruss, its computation requires identifying all

butterflies (i.e., (2, 2)-cliques) in the graph. The number of butterflies can be extremely large (e.g.,

the Tracker graph in [35] has only 140 million edges but contains more than 2 × 10
13

butterflies).

Therefore, computing 𝑘-bitruss is also very costly for large real-world graphs.

Although (𝛼, 𝛽)-core can be computedmore efficiently, we observe that (𝛼, 𝛽)-core,𝐶𝛼,𝛽 , often fails
to accurately model the density structure of the graph, resulting in unsatisfactory outcomes, such

as (1) failing to separate two different communities or (2) forcibly separating a densely-connected

community. For example, as shown in Figure 1a, the (3, 2)-core contains two communities, i.e.,

𝐶
3,2 = Community #1 ∪ Community #2, and 𝐶

4,2 = 𝐶
3,3 = ∅, indicating that (𝛼, 𝛽)-core cannot

separate the two communities even by adjusting the values of 𝛼 and 𝛽 . On the other hand, the

graph in Figure 1b contains only one densely-connected community, while 𝐶
2,3 and 𝐶3,3 forcibly

split it. Furthermore, 𝐶
3,3 has a higher 𝛼 value compared to 𝐶

2,3 and thus is supposed to be denser,

but in fact, 𝐶
3,3 contains only 15 edges, whereas 𝐶

2,3 \𝐶3,3 contains 16 edges. This indicates that

𝐶
3,3 unreasonably splits the community and incorrectly identifies a sparser part as denser.

To address the shortcomings of existing models, we propose a novel dense subgraph model for

bipartite graphs, called the (𝛼, 𝛽)-dense subgraph. Compared to existing models, the advantages of

our (𝛼, 𝛽)-dense subgraph model are twofold. (1) Density-based definition. Unlike (𝛼, 𝛽)-core, our
(𝛼, 𝛽)-dense subgraph can accurately reflect the density structure of bipartite graphs. For instance,

in the example graphs shown in Figure 1, the (𝛼, 𝛽)-dense subgraph, denoted as 𝐷𝛼,𝛽 , correctly

partitions the first graph into two distinct communities and does not split the community in the

second graph, providing a more accurate and meaningful decomposition than the (𝛼, 𝛽)-core. (2)
Efficient computation and high scalability. Unlike maximal biclique, 𝑘-biplex, and 𝑘-bitruss,

which are computationally costly, the proposed (𝛼, 𝛽)-dense subgraph model can be computed in

near-linear time and is scalable to large graphs with billions of edges.
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These advantages make the (𝛼, 𝛽)-dense subgraph a powerful tool for analyzing bipartite graphs.

It combines computational efficiency with accurate density modeling, enabling its application to a

wide range of real-world problems. Building on the advantages of the (𝛼, 𝛽)-dense subgraph, this
paper makes the following key contributions:

Novel model. We present a novel (𝛼, 𝛽)-dense subgraph model for bipartite graphs, based on the

indegree and reachability of nodes within the orientation of the graph. Specifically, we partition

nodes into two sets 𝑆 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 < 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 < 𝛽} and 𝑇 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 > 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 > 𝛽}.
When there is no path from a node in 𝑆 to a node in 𝑇 , the (𝛼, 𝛽)-dense subgraph contains all

the nodes within 𝑇 or those can reach a node in 𝑇 . We show that our model is density-based
(see Theorem 2), and it is unique for a given pair of (𝛼, 𝛽). Moreover, we demonstrate that all the

(𝛼, 𝛽)-dense subgraphs are nested within each other, forming a hierarchical density decomposition

of the bipartite graph. Additionally, we prove a Sandwich Theorem stating that the (𝛼, 𝛽)-dense
subgraphs and (𝛼, 𝛽)-cores are interlaced with each other, based on which powerful core-based

pruning techniques are carefully designed for computing the (𝛼, 𝛽)-dense subgraphs.
Efficient algorithms. Equipped with our model, we study the dense subgraph search (DSS)

problem which aims to find the (𝛼, 𝛽)-dense subgraph for a given pair of (𝛼, 𝛽); and the density

decomposition (DD) problem which computes all non-empty (𝛼, 𝛽)-dense subgraphs. For the DSS
problem, we first devise a basic algorithm DSS based on the definition of (𝛼, 𝛽)-dense subgraph with

a complexity of 𝑂(∣𝐸∣2). Then, we develop a novel and more efficient network flow algorithm with

a time complexity of𝑂(∣𝐸∣1.5). To further improve the efficiency, we propose DSS++ which employs

a carefully-designed core-based pruning technique to narrow the graph size to a much smaller

subgraph 𝑅 before the network flow computation, reducing the complexity to 𝑂(∣𝐸∣ + ∣𝐸(𝑅)∣1.5).
For the DD problem, we first present a basic algorithm DD that utilizes the DSS++ algorithm

to compute the dense subgraphs layer by layer, with a complexity of 𝑂(𝑙𝑎𝑦𝑒𝑟 ⋅ ∣𝐸∣1.5), where
𝑙𝑎𝑦𝑒𝑟 is the number of layers of the density decomposition. Then, we propose a novel and more

efficient network-flow algorithmDD+ along with a newly-developed divide-and-conquer technique,
reducing the time complexity to 𝑂(𝑝 ⋅ log𝑑

max
⋅ ∣𝐸∣1.5), where 𝑝 is typically a small constant in

real-world graphs, and 𝑑
max

is the maximum degree.

Extensive experiments.We use 9 large real-world bipartite graphs to evaluate the efficiency of

the proposed algorithms. The results show that: (1) The DSS++ algorithm for (𝛼, 𝛽)-dense subgraph
search is significantly faster than DSS and DSS+, with up to 3674x and 14.8x speedup, respectively;

(2) The core-based pruning technique used in DSS++ can considerably narrow the scale of the

graph and thus minimize the network flow computation time, making the time cost of the (𝛼, 𝛽)-
dense subgraph search comparable to that of (𝛼, 𝛽)-core subgraph; (3) For density decomposition

computation, the improved DD+ algorithm is up to 244.5x faster than DD, while consuming almost

the same amount of memory asDD. We also conduct case studies on 3 additional real-world bipartite

graphs to demonstrate the effectiveness of our (𝛼, 𝛽)-dense subgraph model. The results confirm

that (1) compared to the other models, the (𝛼, 𝛽)-dense subgraph is denser and more reasonable in

modeling dense subgraphs in bipartite graphs; and (2) the density decomposition is superior to

core decomposition for characterizing hierarchical dense subgraphs in bipartite graphs.

Reproducibility. The source code of this paper can be found at https://github.com/Flydragonet/ab-

dense-subgraph.

2 Preliminaries
Consider an undirected and unweighted bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), where 𝑈 and 𝑉 are two

disjoint node sets representing the nodes on the upper and lower sides respectively, and 𝐸 ⊆ 𝑈 ×𝑉

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 30. Publication date: February 2025.

https://github.com/Flydragonet/ab-dense-subgraph
https://github.com/Flydragonet/ab-dense-subgraph


30:4 Yalong Zhang, et al.

𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢6 𝑢𝑢7

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7 𝑣𝑣8 𝑣𝑣9
𝐷𝐷2,1𝐷𝐷1,1\𝐷𝐷2,1

Fig. 2. Illustration of the orientation of a bipartite graph.

denotes the set of edges. For a node 𝑥 ∈ 𝑈 ∪𝑉 , its degree in 𝐺 , denoted by 𝑑𝑥 (𝐺), is the number

of nodes linked to 𝑥 , i.e., 𝑑𝑥 (𝐺) = ∣{𝑦∣(𝑥,𝑦) ∈ 𝐸}∣. Alternatively, we denote the degree by 𝑑𝑥

for brevity. Given a node subset 𝑋 ⊆ 𝑈 ∪ 𝑉 , let 𝑋𝑈 and 𝑋
𝑉
be the upper and lower nodes

of 𝑋 , defined as 𝑋
𝑈

≜ 𝑋 ∩ 𝑈 and 𝑋
𝑉

≜ 𝑋 ∩ 𝑉 , respectively. The subgraph induced by 𝑋 is

𝐺(𝑋 ) = (𝑋𝑈 , 𝑋𝑉 , 𝐸(𝑋 )), where 𝐸(𝑋 ) includes all edges whose both endpoints are contained within

𝑋 . For two node sets 𝑋 and 𝑌 satisfying 𝑋 ∩ 𝑌 = ∅, we define the cross edge between 𝑋 and 𝑌 as

𝐸×(𝑋,𝑌 ) = {(𝑥,𝑦) ∈ 𝐸∣𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 }.
Assigning a direction to each edge of a graph𝐺 = (𝑈 ,𝑉 , 𝐸) transforms it into a directed graph

termed as an orientation of 𝐺 , denoted by 𝐺 = (𝑈 ,𝑉 , 𝐸), where 𝐸 comprises the directed edges.

For example, the directed graph depicted in Figure 2 is an orientation of the undirected graph

shown in Figure 1a. We use angle brackets ⟨𝑥,𝑦⟩ to denote a directed edge, and round brackets

(𝑥,𝑦) to denote an undirected edge. In the orientation 𝐺 , the indegree of a node 𝑥 ∈ 𝑈 ∪ 𝑉 is

denoted by 𝑑𝑥 (𝐺) = ∣{𝑦∣⟨𝑦, 𝑥⟩ ∈ 𝐸}∣ or, more succinctly, 𝑑𝑥 . A path 𝑠 ↝ 𝑡 is a sequence of nodes

𝑠 = 𝑥
0
, 𝑥

1
,⋯, 𝑥𝑙−1

, 𝑡 = 𝑥𝑙 , where ⟨𝑥𝑖−1
, 𝑥𝑖⟩ ∈ 𝐸 for 𝑖 = 1,⋯, 𝑙 , and the length of the path is 𝑙 . If a path

𝑠 ↝ 𝑡 exists, then we say that 𝑠 can reach 𝑡 .
Before introducing the problem of density decomposition of bipartite graphs, we first propose a

novel dense subgraph model on bipartite graphs, called (𝛼, 𝛽)-dense subgraph.
Definition 1. ((𝛼, 𝛽)-dense subgraph) Given an undirected and unweighted bipartite graph

𝐺 = (𝑈 ,𝑉 , 𝐸), two non-negative integers 𝛼 and 𝛽 , let𝐺 be an orientation of𝐺 , and let 𝑆 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 <

𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 < 𝛽} and 𝑇 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 > 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 > 𝛽}. If there is no path 𝑠 ↝ 𝑡 in the
orientation 𝐺 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 , then the (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 is the subgraph induced
by the node set 𝑇 ∪ {𝑥 ∣𝑥 can reach a node in 𝑇 𝑖𝑛 𝐺}.

In Definition 1, the orientation is used only to define the concept of 𝐷𝛼,𝛽 . Therefore, regardless

of which orientation 𝐺 is used, as long as it satisfies the condition that there is no path from 𝑠 to

𝑡 , the resulting 𝐷𝛼,𝛽 is the same. That is, 𝐷𝛼,𝛽 is independent of the orientation, as shown by the

following theorem demonstrating the uniqueness of 𝐷𝛼,𝛽 .

Theorem 1. Given a graph 𝐺 and two non-negative integers 𝛼 and 𝛽 , the 𝐷𝛼,𝛽 is unique.

Proof. Assume for contradiction that there are two different 𝐷𝛼,𝛽 , denoted as 𝐷
1
and 𝐷

2
, and

let 𝐷 = 𝐷
1
\ 𝐷

2
≠ ∅. Since 𝐷 ⊆ 𝐷

1
and 𝐷 ⊆ (𝑈 ∪ 𝑉 ) \ 𝐷

2
, we have ∣𝐸(𝐷)∣ + ∣𝐸×(𝐷,𝐷1

\ 𝐷)∣ >
𝛼 ⋅∣𝐷𝑈 ∣+𝛽 ⋅∣𝐷𝑉 ∣ and ∣𝐸(𝐷)∣+∣𝐸×(𝐷,𝐷2

)∣ ≤ 𝛼 ⋅∣𝐷𝑈 ∣+𝛽 ⋅∣𝐷𝑉 ∣ according to Theorem 2, which we will

prove later. Given that ∣𝐸×(𝐷,𝐷2
)∣ ≥ ∣𝐸×(𝐷,𝐷1

\𝐷)∣, we derive a contradiction: 𝛼 ⋅ ∣𝐷𝑈 ∣+ 𝛽 ⋅ ∣𝐷𝑉 ∣ <
∣𝐸(𝐷)∣ + ∣𝐸×(𝐷,𝐷1

\ 𝐷)∣ ≤ ∣𝐸(𝐷)∣ + ∣𝐸×(𝐷, 𝐷2
)∣ ≤ 𝛼 ⋅ ∣𝐷𝑈 ∣ + 𝛽 ⋅ ∣𝐷𝑉 ∣. Thus, 𝐷𝛼,𝛽 is unique. □

Note that in Definition 1, the parameters 𝛼 and 𝛽 are introduced to constrain the indegrees of

vertices on the two sides of bipartite graphs respectively, as these sides are typically asymmetric.

For convenience, in the following, we use 𝐷𝛼,𝛽 to denote the (𝛼, 𝛽)-dense subgraph or the set of

nodes corresponding to that subgraph. By Definition 1, we can easily obtain the following results.
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Lemma 1. Given an orientation 𝐺 that does not contain a path 𝑠 ↝ 𝑡 as defined in Definition 1.
Then, we have: (1) the edges in 𝐸×(𝐷𝛼,𝛽 , (𝑈 ∪𝑉 ) \ 𝐷𝛼,𝛽 ) are oriented toward (𝑈 ∪𝑉 ) \ 𝐷𝛼,𝛽 ; (2) for
any 𝑢 ∈ 𝐷

𝑈
𝛼,𝛽 and 𝑣 ∈ 𝐷

𝑉

𝛼,𝛽 , we have 𝑑𝑢 (𝐺) = 𝑑𝑢 (𝐷𝛼,𝛽 ) ≥ 𝛼 and 𝑑𝑣(𝐺) = 𝑑𝑣(𝐷𝛼,𝛽 ) ≥ 𝛽 ; (3) for any

𝑢 ∈ 𝑈 \ 𝐷𝑈𝛼,𝛽 and 𝑣 ∈ 𝑉 \ 𝐷𝑉𝛼,𝛽 , we have 𝑑𝑢 (𝐺) ≤ 𝛼 and 𝑑𝑣(𝐺) ≤ 𝛽 .

Example 1. Consider the orientation𝐺 shown in Figure 2. Let 𝛼 = 2 and 𝛽 = 1, and then, according
to Definition 1, we have 𝑆 = {𝑢

2
} and 𝑇 = {𝑣

6
}. It can be observed that no node in 𝑆 can reach

any node in 𝑇 . Consequently, the (2, 1)-dense subgraph 𝐷
2,1 is the subgraph induced by the node set

𝑇 ∪ {𝑥 ∣𝑥 can reach a node in 𝑇 ∈ 𝐺} = {𝑢
4
,⋯, 𝑢

7
} ∪ {𝑣

5
,⋯, 𝑣

9
} (i.e., the red cycle area in Figure 2).

The intuition behind (𝛼, 𝛽)-dense subgraph model. The following theorem demonstrates that

our (𝛼, 𝛽)-dense subgraph is density-based and can serve as an effective dense subgraph model for

bipartite subgraphs.

Theorem 2. The (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 satisfies: (1) (inside dense) for any non-empty 𝑋 ⊆

𝐷𝛼,𝛽 , the removal of 𝑋 from 𝐷𝛼,𝛽 results in a deletion of more than 𝛼 ⋅ ∣𝑋𝑈 ∣ + 𝛽 ⋅ ∣𝑋𝑉 ∣ edges, i.e.,
∣𝐸(𝑋 )∣+∣𝐸×(𝑋, 𝐷𝛼,𝛽 \𝑋 )∣ > 𝛼 ⋅∣𝑋𝑈 ∣+𝛽 ⋅∣𝑋𝑉 ∣; (2) (outside sparse) for any subset𝑌 ⊆ (𝑈 ∪𝑉 )\𝐷𝛼,𝛽 , the
inclusion of𝑌 into𝐷𝛼,𝛽 leads to an increase of at most𝛼 ⋅∣𝑌𝑈 ∣+𝛽 ⋅∣𝑌𝑉 ∣ edges, i.e., ∣𝐸(𝑌 )∣+∣𝐸×(𝑌, 𝐷𝛼,𝛽 )∣ ≤
𝛼 ⋅ ∣𝑌𝑈 ∣ + 𝛽 ⋅ ∣𝑌𝑉 ∣.

Proof. Given an orientation𝐺 that does not contain a path 𝑠 ↝ 𝑡 as defined in Definition 1, it is

clear that 𝐺 satisfies the three conditions given in Lemma 1.

For case (1), since the edges in 𝐸×(𝐷𝛼,𝛽 , (𝑈 ∪𝑉 )\𝐷𝛼,𝛽 ) are oriented toward (𝑈 ∪𝑉 )\𝐷𝛼,𝛽 (condition
(1) in Lemma 1), the indegree of the nodes in 𝑋 must come from the edges within 𝐸(𝐷𝛼,𝛽 ). Thus, we
have ∑𝑥∈𝑋 𝑑𝑥 (𝐺) = ∑𝑥∈𝑋 𝑑𝑥 (𝐷𝛼,𝛽 ) ≤ ∣𝐸(𝑋 )∣ + ∣𝐸×(𝑋, 𝐷𝛼,𝛽 \ 𝑋 )∣. Combining this with condition (2)

in Lemma 1, we further get ∣𝐸(𝑋 )∣+ ∣𝐸×(𝑋, 𝐷𝛼,𝛽 \𝑋 )∣ ≥ ∑𝑥∈𝑋 𝑑𝑥 (𝐺) ≥ 𝛼 ⋅ ∣𝑋
𝑈 ∣+ 𝛽 ⋅ ∣𝑋𝑉 ∣. These two

inequalities cannot both hold as equalities; otherwise, 𝑋 would not satisfy the definition of 𝐷𝛼,𝛽

and should not be included in 𝐷𝛼,𝛽 . Thus, we have ∣𝐸(𝑋 )∣ + ∣𝐸×(𝑋, 𝐷𝛼,𝛽 \ 𝑋 )∣ > 𝛼 ⋅ ∣𝑋𝑈 ∣ + 𝛽 ⋅ ∣𝑋𝑉 ∣.
Regarding case (2), we have 𝛼 ⋅ ∣𝑌𝑈 ∣ + 𝛽 ⋅ ∣𝑌𝑉 ∣ ≥ ∑𝑦∈𝑌 𝑑𝑦(𝐺) ≥ ∑𝑦∈𝑌 𝑑𝑦(𝐷𝛼,𝛽 ∪ 𝑌 ) = ∣𝐸(𝑌 )∣ +

∣𝐸×(𝑌, 𝐷𝛼,𝛽 )∣, where the first inequality comes from condition (3) in Lemma 1 and the last equality

holds because the edges in 𝐸×(𝐷𝛼,𝛽 , 𝑌 ) are oriented toward 𝑌 . □

With Theorem 2, the removal of any subset𝑋 ⊆ 𝐷𝛼,𝛽 results in the loss of more than 𝛼 ⋅ ∣𝑋𝑈 ∣+ 𝛽 ⋅
∣𝑋𝑉 ∣ edges, while merging a node set 𝑌 located outside 𝐷𝛼,𝛽 into 𝐷𝛼,𝛽 only increases the number of

edges by at most 𝛼 ⋅ ∣𝑌𝑈 ∣ + 𝛽 ⋅ ∣𝑌𝑉 ∣. These two aspects show that every subgraph in 𝐷𝛼,𝛽 is locally
dense and well-connected, and the subgraph outside 𝐷𝛼,𝛽 is sparse and not closely connected to

𝐷𝛼,𝛽 . Thus, 𝐷𝛼,𝛽 can be used to efficiently extract dense subgraphs, demonstrating why 𝐷𝛼,𝛽 is

considered as density-based dense subgraph model. In contrast, the degree-based (𝛼, 𝛽)-core does
not exhibit this density property.

Example 2. For 𝐷
2,1 in Figure 1a, according to Theorem 2, 𝐷

2,1 is an inside dense and outside sparse
subgraph. For example, if we remove the four nodes {𝑢

4
, 𝑢

5
, 𝑣

5
, 𝑣

6
} inside of 𝐷

2,1 and their adjacent
edges, 𝐷

2,1 will lose up to 9 edges. In contrast, if we add the four nodes {𝑢
2
, 𝑢

3
, 𝑣

3
, 𝑣

4
} outside of 𝐷

2,1

into 𝐷
2,1, 𝐷2,1 will only gain 4 edges. For 𝐷

1,2 in Figure 1b, all parts of 𝐷
1,2 are relatively dense, so it

cannot extract a subgraph like 𝐶
3,3.

Furthermore, the definition of the (𝛼, 𝛽)-dense subgraph is essentially analogous to a layer of the

density decomposition defined on general graphs [10]. Since each layer of the density decomposition
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is inherently a density-based dense subgraph [10], the (𝛼, 𝛽)-dense subgraph should also be consid-

ered as a density-based dense subgraph. This conceptual alignment highlights the density-based

nature of the (𝛼, 𝛽)-dense subgraph.
The hierarchical property of (𝛼, 𝛽)-dense subgraph. Below, we prove that the (𝛼, 𝛽)-dense
subgraph 𝐷𝛼,𝛽 is hierarchical.

Theorem 3. Given a graph 𝐺 , for 𝛼+ ≥ 𝛼 and 𝛽+ ≥ 𝛽 , we have 𝐷𝛼+,𝛽+ ⊆ 𝐷𝛼,𝛽 .

Proof. We assume for contradiction that 𝐷 = 𝐷𝛼+,𝛽+ \ 𝐷𝛼,𝛽 ≠ ∅. With Theorem 2, ∣𝐸(𝐷)∣ +
∣𝐸×(𝐷, 𝐷𝛼+,𝛽+ \ 𝐷)∣ > 𝛼+ ⋅ ∣𝐷𝑈 ∣ + 𝛽+ ⋅ ∣𝐷𝑉 ∣ and ∣𝐸(𝐷)∣ + ∣𝐸×(𝐷,𝐷𝛼,𝛽 )∣ ≤ 𝛼 ⋅ ∣𝐷𝑈 ∣ + 𝛽 ⋅ ∣𝐷𝑉 ∣ hold.
Due to ∣𝐸×(𝐷, 𝐷𝛼,𝛽 )∣ ≥ ∣𝐸×(𝐷, 𝐷𝛼+,𝛽+ \ 𝐷)∣, we can derive the contradiction 𝛼

+ ⋅ ∣𝐷𝑈 ∣ + 𝛽+ ⋅ ∣𝐷𝑉 ∣ <
∣𝐸(𝐷)∣ + ∣𝐸×(𝐷, 𝐷𝛼+,𝛽+ \ 𝐷)∣ ≤ ∣𝐸(𝐷)∣ + ∣𝐸×(𝐷, 𝐷𝛼,𝛽 )∣ ≤ 𝛼 ⋅ ∣𝐷𝑈 ∣ + 𝛽 ⋅ ∣𝐷𝑉 ∣. Thus, the hierarchy of

𝐷𝛼,𝛽 is established. □

By Theorem 3, all (𝛼, 𝛽)-dense subgraphs with different parameters 𝛼 and 𝛽 form a hierarchy

within a bipartite graph. Specifically, each parameter pair (𝛼, 𝛽) defines a distinct layer in this

hierarchy.We refer to the task of identifying a single layer in this hierarchy as the problem of finding

a dense subgraph and computing all non-empty layers as the problem of density decomposition.

Formally, we define our problems as follows:

Problem 1: Dense Subgraph Search (DSS). Given an undirected and unweighted bipartite graph

𝐺 = (𝑈 ,𝑉 , 𝐸) and two integers 𝛼 and 𝛽 , the DSS problem is to compute the (𝛼, 𝛽)-dense subgraph.
Problem 2: Density Decomposition (DD). Given an undirected and unweighted bipartite graph

𝐺 = (𝑈 ,𝑉 , 𝐸), the DD problem is to find all non-empty (𝛼, 𝛽)-dense subgraphs.
Discussions and challenges. For Problem 1, a potential approach to compute the (𝛼, 𝛽)-dense
subgraph is to iteratively find the 𝑠 ↝ 𝑡 paths in Definition 1 and subsequently eliminate them

by reversing the direction of all edges along these paths. This process continues until no 𝑠 ↝ 𝑡

paths remain. This approach is similar to the path reversal algorithm for density decomposition on

unipartite graphs [10]. However, such an approach incurs a high time complexity of 𝑂(∣𝐸∣2) [10],
making it not scalable to large graphs. In this paper, we will develop a novel network flow-based

algorithm to accelerate the computation. An inherent challenge is how to design the flow network

structure so that the maximum flow algorithm can compute the (𝛼, 𝛽)-dense subgraph. Moreover,

for real-world graphs with billions of edges, merely traversing the edge set is time-consuming. Thus,

it becomes essential to devise reduction techniques that can scale down the graph data, enabling

computation of the dense subgraph on a reduced graph and thereby enhancing scalability.

For Problem 2, a straightforward approach to compute the complete density decomposition is

to sequentially compute each layer using the single-layer algorithm from Problem 1. However,

this approach fails to leverage the hierarchical characteristics of the dense subgraph, resulting in

redundant computations and inefficiencies. Therefore, it is important to develop new computation

strategies that capitalize on these characteristics. In summary, the key challenges to address are as

follows: (1) How to design a flow network to compute the (𝛼, 𝛽)-dense subgraph using network

flow technique? (2) How to design an effective pruning strategy to reduce the computation of the

dense subgraph to a smaller data scale? (3) How to utilize the properties of density decomposition

to design efficient computational strategies?

3 Theoretical Relation to (𝛼, 𝛽)-core
In this section, we first present a “Sandwich Theorem” to establish the inclusion relation between

the (𝛼, 𝛽)-dense subgraph and (𝛼, 𝛽)-core, which will be used for graph reduction in solving both
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the DSS and DD problems. We then highlight the advantage of the (𝛼, 𝛽)-dense subgraph over

(𝛼, 𝛽)-core by the density metric defined on bipartite graphs. Below, we give the definition of

(𝛼, 𝛽)-core.
Definition 2. ((𝛼, 𝛽)-core) [17] Given an undirected, unweighted bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸)

and two positive integers 𝛼 and 𝛽 , the (𝛼, 𝛽)-core, denoted by 𝐶𝛼,𝛽 , is the maximal subgraph where
each node 𝑢 ∈ 𝐶

𝑈
𝛼,𝛽 has a degree 𝑑𝑢 (𝐶𝛼,𝛽 ) ≥ 𝛼 , and each node 𝑣 ∈ 𝐶𝑈𝛼,𝛽 has a degree 𝑑𝑣(𝐶𝛼,𝛽 ) ≥ 𝛽 .

Note that the parameters 𝛼 and 𝛽 are positive integers for 𝐶𝛼,𝛽 , whereas they are non-negative
integers for 𝐷𝛼,𝛽 . These constraints are designed to exclude the trivial case of isolated nodes, as in

the previous studies [22, 25].

The Sandwich Theorem. Theorem 4 shows that the (𝛼, 𝛽)-dense subgraphs and the (𝛼, 𝛽)-cores
are sandwiched by each other.

Theorem 4. (Sandwich Theorem) Given an undirected and unweighted bipartite graph 𝐺 =

(𝑈 ,𝑉 , 𝐸), we have: 𝐶
2𝛼+1,2𝛽+1

⊆ 𝐷𝛼,𝛽 ⊆ 𝐶𝛼+1,𝛽+1
⊆ 𝐷⌈𝛼−1

2
⌉,⌈ 𝛽−1

2
⌉.

Proof. Given an orientation 𝐺 in Definition 1, it satisfies the three properties in Lemma 1.

We first prove that 𝐷𝛼,𝛽 ⊆ 𝐶𝛼+1,𝛽+1
. This trivially holds when 𝐷𝛼,𝛽 = ∅; thus, we focus on the

case of 𝐷𝛼,𝛽 ≠ ∅. According to Lemma 1, for any 𝑢 ∈ 𝐷
𝑈
𝛼,𝛽 , we have 𝑑𝑢 (𝐷𝛼,𝛽 ) ≥ 𝛼 . In particular,

if 𝑑𝑢 (𝐷𝛼,𝛽 ) = 𝛼 , we can conclude that 𝑢 has at least one outgoing edge in 𝐺(𝐷𝛼,𝛽 ), otherwise, by
Definition 1, 𝑢 should not be included in 𝐷𝛼,𝛽 . Since the degree of a node in𝐺 is equal to the sum

of its indegree and outdegree in the orientation 𝐺 , we have 𝑑𝑢 (𝐷𝛼,𝛽 ) ≥ 𝛼 + 1. Similarly, for any

𝑣 ∈ 𝐷
𝑉

𝛼,𝛽 , 𝑑𝑣(𝐷𝛼,𝛽 ) ≥ 𝛽 + 1 holds. According to Definition 2, we can conclude 𝐷𝛼,𝛽 ⊆ 𝐶𝛼+1,𝛽+1
.

Then, we show 𝐶𝛼+1,𝛽+1
⊆ 𝐷⌈𝛼−1

2
⌉,⌈ 𝛽−1

2
⌉ by analyzing the non-trivial case when 𝐶𝛼+1,𝛽+1

≠ ∅.

Given 𝑥 be any node in 𝐶𝛼+1,𝛽+1
, we aim to prove 𝑥 ∈ 𝐷⌈𝛼−1

2
⌉,⌈ 𝛽−1

2
⌉. Let 𝑅 = {𝑦 ∈ 𝐶𝛼+1,𝛽+1

∣
𝑥 can reach 𝑦 in 𝐺}, and then all edges in 𝐸×(𝑅,𝐶𝛼+1,𝛽+1

\ 𝑅) are oriented toward 𝑅 in 𝐺 . We can

further derive ∑𝑦∈𝑅 𝑑𝑦(𝐺) ≥ ∣𝐸×(𝑅,𝐶𝛼+1,𝛽+1
\ 𝑅)∣ + ∣𝐸(𝑅)∣. According to the definition of 𝐶𝛼+1,𝛽+1

,

we have ∣𝐸×(𝑅,𝐶𝛼+1,𝛽+1
\ 𝑅)∣ + ∣𝐸(𝑅)∣ ≥ ∑𝑦∈𝑅 𝑑𝑦(𝐶𝛼+1,𝛽+1

)/2 ≥ (𝛼 + 1)∣𝑅𝑈 ∣/2 + (𝛽 + 1)∣𝑅𝑉 ∣/2. Thus,

∑𝑦∈𝑅 𝑑𝑦(𝐺) ≥ (𝛼 + 1)∣𝑅𝑈 ∣/2 + (𝛽 + 1)∣𝑅𝑉 ∣/2 holds. This implies that at least one node 𝑢 ∈ 𝑅
𝑈
has

𝑑𝑢 ≥ ⌈𝛼−1

2
⌉+ 1, or at least one node 𝑣 ∈ 𝑅

𝑉
has 𝑑𝑣 ≥ ⌈ 𝛽−1

2
⌉+ 1, which can be reached by 𝑥 . Therefore,

according to Definition 1, we have 𝑥 ∈ 𝐷⌈𝛼−1

2
⌉,⌈ 𝛽−1

2
⌉.

Since 𝐶𝛼+1,𝛽+1
⊆ 𝐷⌈𝛼−1

2
⌉,⌈ 𝛽−1

2
⌉ holds, we can equivalently derive 𝐶

2𝛼+1,2𝛽+1
⊆ 𝐷𝛼,𝛽 . □

Based on the Sandwich Theorem, we can efficiently compute (𝛼, 𝛽)-dense subgraphs by pruning

the graph with the (𝛼, 𝛽)-cores. Such a pruning technique will be used in our proposed algorithms

(see Sections 4 and 5).

Advantages of the (𝛼, 𝛽)-dense subgraph model. Recall that a good dense subgraph model

should be densely connected internally and sparsely connected externally. Given 𝐷𝛼,𝛽 ≠ ∅ and

𝐷𝛼,𝛽 ≠ 𝐶𝛼+1,𝛽+1
, 𝐷𝛼,𝛽 guarantees that the number of edges lost after deleting any subgraph of 𝐷𝛼,𝛽

is not less than the number of edges gained by adding the external nodes to𝐷𝛼,𝛽 (Theorem 2). While

𝐶𝛼+1,𝛽+1
intuitively contains both 𝐷𝛼,𝛽 and a sparse redundant part 𝐶𝛼+1,𝛽+1

\ 𝐷𝛼,𝛽 (Theorem 4),

it does not satisfy the well-behaved property described in Theorem 2. Thus, for 𝐶𝛼+1,𝛽+1
, we can

typically find a denser (and hence better) subgraph 𝐷𝛼,𝛽 instead of 𝐶𝛼+1,𝛽+1
.

Theorem 5 shows another advantage of the (𝛼, 𝛽)-dense subgraph model over the (𝛼, 𝛽)-core
subgraph: it provides a better lower bound for the degree-based density, as defined in the following.
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Algorithm 1: DSS(𝐺, 𝛼, 𝛽)
Input: A bipartite graph𝐺 , two non-negative integers 𝛼 and 𝛽 .

Output: 𝐷𝛼,𝛽 .

1 Arbitrarily obtain an orientation𝐺 of𝐺 ;

2 while True do
3 𝑆 ← {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) < 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 (𝐺) < 𝛽};
4 𝑇 ← {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) > 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 (𝐺) > 𝛽};
5 if there is a path 𝑠 ↝ 𝑡 with 𝑠 ∈ 𝑆 , 𝑡 ∈ 𝑇 in𝐺 then
6 reverse 𝑠 ↝ 𝑡 ;

7 else break the loop;

8 𝐷𝛼,𝛽 ← 𝑇 ∪ {𝑥 ∣𝑥 can reach a node in𝑇 };
9 return 𝐷𝛼,𝛽 ;

Definition 3. (Density) [4] Given an undirected and unweighted bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸)
and a subgraph 𝐻 , the density of 𝐻 is defined as 𝜌(𝐻 ) = ∣𝐸(𝐻 )∣√

∣𝐻𝑈 ∣⋅∣𝐻𝑉 ∣
.

Theorem 5. Given an undirected and unweighted bipartite graph𝐺 and two non-negative integers
𝛼 and 𝛽 , we have: (1) 𝜌(𝐷𝛼,𝛽 ) > 2

√
𝛼𝛽 if 𝐷𝛼,𝛽 ≠ ∅; (2) 𝜌(𝐶𝛼,𝛽 ) ≥

√
𝛼𝛽 if 𝐶𝛼,𝛽 ≠ ∅, and this density

lower bound is tight.

Proof. In Theorem 2, let 𝑋 = 𝐷𝛼,𝛽 , we have 𝐸(𝐷𝛼,𝛽 ) > 𝛼∣𝐷𝑈𝛼,𝛽 ∣+ 𝛽∣𝐷
𝑉

𝛼,𝛽 ∣. By Definition 3, we can

derive 𝜌(𝐷𝛼,𝛽 ) =
∣𝐸(𝐷𝛼,𝛽 )∣

2

√
∣𝐷𝑈

𝛼,𝛽
∣∣𝐷𝑉

𝛼,𝛽
∣
>

𝛼 ∣𝐷𝑈
𝛼,𝛽 ∣+𝛽∣𝐷

𝑉
𝛼,𝛽 ∣

2

√
∣𝐷𝑈

𝛼,𝛽
∣∣𝐷𝑉

𝛼,𝛽
∣
≥ 2

√
𝛼𝛽 . In terms of 𝐶𝛼,𝛽 , according to Definition

3, we have 𝜌(𝐶𝛼,𝛽 ) =
∣𝐸(𝐶𝛼,𝛽 )∣

2

√
∣𝐶𝑈

𝛼,𝛽
∣∣𝐶𝑉

𝛼,𝛽
∣
≥

𝛼 ∣𝐶𝑈
𝛼,𝛽 ∣/2+𝛽∣𝐶𝑉

𝛼,𝛽 ∣/2

2

√
∣𝐶𝑈

𝛼,𝛽
∣∣𝐶𝑉

𝛼,𝛽
∣

≥
√
𝛼𝛽 . When a 𝐶𝛼,𝛽 satisfies that nodes in

both 𝐶
𝑈
𝛼,𝛽 and 𝐶

𝑉

𝛼,𝛽 have degrees 𝛼 and 𝛽 respectively, the above inequality becomes an equality.

Therefore, the lower-bound is tight. □

According to Theorem 5, to achieve a density lower bound nearly as good as 𝐷𝛼,𝛽 , we need to

compute 𝐶
2𝛼,2𝛽 within the core-based subgraph model. However, for sufficiently large values of 𝛼

and 𝛽 satisfying𝐷𝛼,𝛽 ≠ ∅, the subgraph𝐶
2𝛼,2𝛽 is often empty, making it meaningless. Taking the real-

world graph in Figure 11 as an example, when 𝛼 = 𝛽 = 185, 𝐷
185,185

≠ ∅, but 𝐶
2𝛼,2𝛽 = 𝐶

370,370
= ∅.

In fact, the largest integer 𝛿 such that 𝐶𝛿,𝛿 ≠ ∅ is only 221. This indicates that the density lower

bound of𝐶
221,221

is merely

√
221 × 221 = 221, whereas the density lower bound of 𝐷

185,185
is as high

as 2

√
185 × 185 = 370. Therefore, our proposed (𝛼, 𝛽)-dense subgraph model has the advantage over

(𝛼, 𝛽)-core in better guaranteeing the density of subgraphs.

4 Dense Subgraph Search Algorithms
This section presents three novel algorithms for finding the (𝛼, 𝛽)-dense subgraph. The idea of
them is closely based on the definition of dense subgraph, that is, eliminating all 𝑠 ↝ 𝑡 paths in

Definition 1 and then obtaining 𝐷𝛼,𝛽 . The difference between these algorithms lies in how the paths

are found and eliminated. In the following, we first propose the DSS algorithm, which eliminates

the 𝑠 ↝ 𝑡 paths through multiple rounds of Breadth-First Search (BFS). As each round of BFS can

eliminate one 𝑠 ↝ 𝑡 path and the number of such paths can be quite large, the algorithm is relatively

inefficient with time complexity of 𝑂(∣𝐸∣2). Then we present the DSS+ algorithm, which performs

a maximum flow computation to eliminate all 𝑠 ↝ 𝑡 paths at once, resulting in a time complexity of
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1
Fig. 3. An example of the re-orientation network.

𝑂(∣𝐸∣3/2); To further improve efficiency, theDSS++ algorithm is developed by utilizing the sandwich

theorem (Theorem 4) to perform core-reduction pruning strategy on DSS+. The DSS++ algorithm

has a time complexity of 𝑂(∣𝐸∣ + ∣𝐸(𝑅)∣3/2), where 𝑅 = 𝐶𝛼+1,𝛽+1
\𝐶

2𝛼+1,2𝛽+1
is the reduced graph,

which is typically much smaller than the entire graph 𝐺 .

4.1 The BFS-based Algorithm: DSS
The DSS algorithm uses BFS to find the 𝑠 ↝ 𝑡 path and then eliminate it based on the reverse
operation, defined as follows. If a directed edge ⟨𝑥,𝑦⟩ is reversed, it becomes ⟨𝑦, 𝑥⟩; If a path is

reversed, then all its edges are reversed. With the reverse operation, the pseudo-code of the DSS
algorithm is shown in Algorithm 1. First, it obtains an orientation by arbitrarily orienting all edges

of 𝐺 (line 1). Then, in the while loop (lines 2-7), the algorithm finds (line 5) and reverses (line 6) all

𝑠 ↝ 𝑡 paths in Definition 1 through the BFS algorithm. Each iteration of the loop invokes one BFS,

removing one 𝑠 ↝ 𝑡 path. The loop terminates when no 𝑠 ↝ 𝑡 path can be found (line 7). Finally,

the algorithm obtains the (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 according to the definition (line 8).

According to Definition 1, the DSS algorithm correctly outputs the (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 .
Below, we analyze the complexity of the DSS algorithm.

Theorem 6. The time and space complexity of the DSS algorithm is𝑂(∣𝐸∣2) and𝑂(∣𝐸∣) respectively.

Proof. For the arbitrary orientation𝐺 obtained by line 1 of Algorithm 1, let𝑇 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) >
𝛼}∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣(𝐺) > 𝛽} be the initial set𝑇 . The reversal of a 𝑠 ↝ 𝑡 path cannot add any new nodes to

the set 𝑇 , thus every node 𝑡 in the 𝑠 ↝ 𝑡 path must be in 𝑇 . As each reversal decreases the indegree

of a node 𝑡 in 𝑇 by 1 and the indegree of a node is non-negative, the number of reversals is clearly

bounded by ∑𝑥∈𝑇 𝑑𝑥 ≤ ∣𝐸∣. Since each 𝑠 ↝ 𝑡 path can be found and reversed using a BFS with a

time complexity of 𝑂(∣𝐸∣), the total time required by DSS is 𝑂(∣𝐸∣2). Clearly, the space complexity

is the input size 𝑂(∣𝐸∣). □

4.2 The Flow-Based Algorithm: DSS+
As mentioned, the DSS algorithm is relatively inefficient because it needs to reverse paths up to

𝑂(∣𝐸∣) times. Here, we introduce the DSS+ algorithm, which accelerates the process by reversing

all paths at once using the network flow technique. The rationale behind the DSS+ algorithm is as

follows: there is a class of algorithms in network flow known as augmenting path algorithms which

eliminate all paths from 𝑠 to 𝑡 using the maximum flow computation. Intuitively, by designing the

flow network structure appropriately, this path elimination technique can also be used to remove

paths in the definition of (𝛼, 𝛽)-dense subgraph. Therefore, inspired by the re-orientation network

of unipartite graphs [8], we propose a re-orientation network on bipartite graphs.

Definition 4. (Re-orientation network) Given an orientation𝐺 = (𝑈 ,𝑉 , 𝐸) of a bipartite graph
and two integers 𝛼 and 𝛽 , the re-orientation network is a triplet (𝑉 ∪𝑈 ∪ {𝑠, 𝑡}, 𝐴, 𝑐(⋅)), where 𝑠 and 𝑡
are the source and sink nodes, respectively, 𝐴 is the arc set, and 𝑐(⋅) is the capacity function, satisfying:
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Algorithm 2: DSS+(𝐺, 𝛼, 𝛽)
Input: A bipartite graph𝐺 , two non-negative integers 𝛼 and 𝛽 .

Output: 𝐷𝛼,𝛽 .

1 Arbitrarily obtain an orientation𝐺 of𝐺 ;

2 foreach 𝑥 ∈ 𝐺 do 𝑑𝑥 ← the indegree of 𝑥 in𝐺 ;

3 𝑆 ← {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) < 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 (𝐺) < 𝛽};
4 𝑇 ← {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) > 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣 (𝐺) > 𝛽};
5 foreach ⟨𝑥, 𝑦⟩ ∈ 𝐺 do
6 Add arc ⟨𝑥, 𝑦⟩ to 𝐴; 𝑐(⟨𝑥, 𝑦⟩) ← 1;

7 foreach 𝑥 ∈ 𝑆 do
8 Add arc ⟨𝑠, 𝑥⟩ to 𝐴;
9 if 𝑥 ∈ 𝑈 then 𝑐(⟨𝑠, 𝑥⟩) ← 𝛼 − 𝑑𝑥 ;

10 else 𝑐(⟨𝑠, 𝑥⟩) ← 𝛽 − 𝑑𝑥 ;

11 foreach 𝑥 ∈ 𝑇 do
12 Add arc ⟨𝑥, 𝑡⟩ to 𝐴;
13 if 𝑥 ∈ 𝑈 then 𝑐(⟨𝑥, 𝑡⟩) ← 𝑑𝑥 − 𝛼 ;

14 else 𝑐(⟨𝑥, 𝑡⟩) ← 𝑑𝑥 − 𝛽 ;

15 Compute the maximum flow of network 𝐴 with capacity 𝑐(⋅);
16 return 𝐷𝛼,𝛽 = {all nodes can reach t in the residual network};

(1) 𝑒 = ⟨𝑥,𝑦⟩ ∈ 𝐴, 𝑐(𝑒) = 1, if 𝑒 ∈ 𝐸; (2) 𝑒 = ⟨𝑠,𝑢⟩ ∈ 𝐴, 𝑐(𝑒) = 𝛼 − 𝑑𝑢 , if 𝑢 ∈ 𝑈 and 𝑑𝑢 < 𝛼 ; (3)
𝑒 = ⟨𝑠, 𝑣⟩ ∈ 𝐴, 𝑐(𝑒) = 𝛽 −𝑑𝑣 , if 𝑣 ∈ 𝑉 and 𝑑𝑣 < 𝛽 ; (4) 𝑒 = ⟨𝑢, 𝑡⟩ ∈ 𝐴, 𝑐(𝑒) = 𝑑𝑢 −𝛼 , if 𝑢 ∈ 𝑈 and 𝑑𝑢 > 𝛼 ;
(5) 𝑒 = ⟨𝑣, 𝑡⟩ ∈ 𝐴, 𝑐(𝑒) = 𝑑𝑣 − 𝛽 , if 𝑣 ∈ 𝑉 and 𝑑𝑣 > 𝛽 .

Let 𝑆 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) < 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣(𝐺) < 𝛽} and 𝑇 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) > 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣(𝐺) > 𝛽},
then in the re-orientation network, the source 𝑠 is connected to all nodes in 𝑆 , and the sink 𝑡

is connected to all nodes in 𝑇 . When the network flow reaches its maximum value, there is no

augmenting path from 𝑠 to 𝑡 , i.e., there should be no path from 𝑆 to 𝑇 , which is consistent with the

definition of (𝛼, 𝛽)-dense subgraph. Thus, the re-orientation network flow technique can be used to

eliminate paths in Definition 1 and search the (𝛼, 𝛽)-dense subgraph.

Example 3. Given the orientation in Figure 2 and 𝛼 = 2, 𝛽 = 1, the corresponding re-orientation
network is shown in Figure 3, where the capacity of each arc is 1. For nodes in 𝑈 , 𝛼 is the pivot of
indegree, and for nodes in 𝑉 , 𝛽 is the pivot of indegree. Source 𝑠 is connected to the nodes whose
indegree does not reach the pivot, thus it is connected to 𝑢

2
with a capacity of 𝛼 − 𝑑𝑢

2
= 1. Sink 𝑡 is

connected to the nodes whose indegree exceeds the pivot, thus it is connected to 𝑣
6
with a capacity of

𝑑𝑣
6
− 𝛽 = 1. Currently, 𝑠 cannot reach 𝑡 , which corresponds to “there is no path 𝑠 ↝ 𝑡” in Definition 1,

and the set 𝑇 ∪ {𝑥 ∣𝑥 can reach a node in 𝑇 𝑖𝑛 𝐺} contains all nodes that can reach the sink 𝑡 , i.e.,
𝐷𝛼,𝛽 = {𝑢

4
,⋯, 𝑢

7
} ∪ {𝑣

5
,⋯, 𝑣

9
}.

Based on the re-orientation network, we propose the DSS+ algorithm as outlined in Algorithm 2.

The algorithm first arbitrarily obtains an orientation (line 1) and then constructs the re-orientation

network (lines 5-14). After that, it computes the maximum flow on it (line 15). Finally, it obtains

𝐷𝛼,𝛽 by computing all nodes that can reach 𝑡 and returns it as the (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 (line
16). Below we prove the correctness and complexity of DSS+.

Theorem 7. The DSS+ algorithm can output 𝐷𝛼,𝛽 correctly with a time complexity of 𝑂(∣𝐸∣1.5)
and a space complexity of 𝑂(∣𝐸∣).
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Algorithm 3: DSS++(𝐺, 𝛼, 𝛽, 𝐷𝑙 , 𝐷𝑢 )
Input: A bipartite graph𝐺 , two non-negative integers 𝛼 and 𝛽 , two subgraph 𝐷𝑙 and 𝐷𝑢 satisfying

𝐷𝑢 ⊆ 𝐷𝛼,𝛽 ⊆ 𝐷𝑙 .

Output: 𝐷𝛼,𝛽 .

1 Let 𝑅 be the induced subgraph of 𝐷𝑙 \𝐷𝑢 ; // Reduction

2 Arbitrarily obtain an orientation 𝑅 of 𝑅;

3 foreach 𝑥 ∈ 𝑅 do 𝑑𝑥 ← the indegree of 𝑥 in 𝑅;

4 foreach (𝑥, 𝑦) ∈ 𝐸×(𝑅,𝐷𝑢 ), 𝑥 ∈ 𝐷𝑢 , 𝑦 ∈ 𝑅 do 𝑑𝑦 ← 𝑑𝑦 + 1;

5 𝑆 ← {𝑢 ∈ 𝑅
𝑈 ∣𝑑𝑢 (𝑅) < 𝛼} ∪ {𝑣 ∈ 𝑅𝑉 ∣𝑑𝑣 (𝑅) < 𝛽};

6 𝑇 ← {𝑢 ∈ 𝑅
𝑈 ∣𝑑𝑢 (𝑅) > 𝛼} ∪ {𝑣 ∈ 𝑅𝑉 ∣𝑑𝑣 (𝑅) > 𝛽};

7 Same as lines 5-15 of Algorithm 2;

8 return {all nodes can reach t in the residual network} ∪𝐷𝑢 ;

Proof. After the maximum flow algorithm is completed, suppose for each saturated edge ⟨𝑥,𝑦⟩ ∈
𝐸 in 𝐴, it is reversed in 𝐺 , then in 𝐺 , the set 𝑆 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) < 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣(𝐺) < 𝛽} will
contain only the nodes in the residual network connected to 𝑠 by unsaturated edges, and the set

𝑇 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) > 𝛼} ∪ {𝑣 ∈ 𝑉 ∣𝑑𝑣(𝐺) > 𝛽} will contain only the nodes in the residual network

connected to 𝑡 by unsaturated edges. Because there is no path 𝑠 ↝ 𝑡 in the residual network, there

is also no path from the set 𝑆 to the set 𝑇 in 𝐺 , which conforms to the definition of a (𝛼, 𝛽)-dense
subgraph. Furthermore, all nodes that can reach 𝑡 in the residual network are exactly those that can

reach𝑇 in the (𝛼, 𝛽)-dense subgraph definition plus𝑇 , thus the set output by the DSS+ algorithm is

𝐷𝛼,𝛽 .

For the time complexity, it can be derived from [9] that the re-orientation network belongs to

the so-called AUC-2 network (i.e., nearly all weights of the edges in the flow network are 1 except

the weights of the edges connected to the source and sink nodes). The time and space complexity

of the maximum flow computation on such an AUC-2 network is 𝑂(∣𝐸∣1.5) and 𝑂(∣𝐸∣) respectively
[9]. Therefore, the time and space complexity of DSS+ is 𝑂(∣𝐸∣1.5) and 𝑂(∣𝐸∣) respectively. □

4.3 The Improved Flow-Based Algorithm: DSS++
AlthoughDSS+ reduces the time complexity to𝑂(∣𝐸∣1.5), it is still relatively time-consuming for large

real-world graphs. Further acceleration can be achieved by seeking pruning strategies to reduce

the computation scale from the entire graph to a small part of the graph. To this end, we develop

the core reduction pruning strategy based on the Sandwich Theorem and propose an improved

flow-based algorithm DSS++, which computes the 𝐷𝛼,𝛽 within the subgraph 𝐶𝛼+1,𝛽+1
\𝐶

2𝛼+1,2𝛽+1

rather than the entire graph.

The core reduction pruning strategy. Without loss of generality, we assume that there are two

subgraphs𝐷𝑙 and𝐷𝑢 satisfying𝐷𝑢 ⊆ 𝐷𝛼,𝛽 ⊆ 𝐷𝑙 . Given that𝐷𝛼,𝛽 ⊆ 𝐷𝑙 , we can safely disregard nodes

outside of 𝐷𝑙 and compute 𝐷𝛼,𝛽 only in the induced subgraph of 𝐷𝑙 . On the other hand, directly

ignoring𝐷𝑢 and computing𝐷𝛼,𝛽 in the induced subgraph of𝐷𝑙 \𝐷𝑢 using the re-orientation network
is incorrect because this approach does not consider the influence of 𝐸×(𝐷𝑙 \𝐷𝑢, 𝐷𝑢 ) on computing

𝐷𝛼,𝛽 . To resolve this issue, we design the following approach: for each (𝑥,𝑦) ∈ 𝐸×(𝐷𝑙 \ 𝐷𝑢, 𝐷𝑢 )
where 𝑥 ∈ 𝐷𝑢 and𝑦 ∈ 𝐷𝑙 \𝐷𝑢 , we assign𝑦 an additional unit indegree in the re-orientation network.
In other words, all the edges in 𝐸×(𝐷𝑙 \ 𝐷𝑢, 𝐷𝑢 ) are treated as oriented toward 𝐷𝑙 \ 𝐷𝑢 . With such

additional indegree assignment, we can compute 𝐷𝛼,𝛽 correctly in the induced subgraph of 𝐷𝑙 \𝐷𝑢
using the re-orientation network.
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Based on the above idea and the sandwich theorem, we can set 𝐷𝑙 = 𝐶𝛼+1,𝛽+1
, 𝐷𝑢 = 𝐶

2𝛼+1,2𝛽+1
,

thus reducing the computation of 𝐷𝛼,𝛽 from the entire graph to 𝐶𝛼+1,𝛽+1
\𝐶

2𝛼+1,2𝛽+1
. The DSS++

algorithm equipped with such core reduction technique is depicted in Algorithm 3. Note that the

algorithm requires two additional subgraphs 𝐷𝑙 = 𝐶𝛼+1,𝛽+1
and 𝐷𝑢 = 𝐶

2𝛼+1,2𝛽+1
as inputs. In line 1,

the algorithm derives the reduced subgraph 𝑅, then arbitrarily obtains its orientation 𝑅 (line 2). To

handle the edges in 𝐸×(𝐷𝑙 \ 𝐷𝑢, 𝐷𝑢 ), the algorithm assigns an additional unit of indegree to 𝑦 for

each edge (𝑥,𝑦) (line 4). Then, it constructs the re-orientation network and computes the network

flow on the induced subgraph of 𝑅 based on the current indegree (lines 5-7). Finally, the returned

subgraph is united with 𝐷𝑢 (line 8). Below, we prove the correctness and complexity of DSS++.

Theorem 8. The DSS++ algorithm can correctly output 𝐷𝛼,𝛽 within 𝑂(∣𝐸∣ + ∣𝐸(𝑅)∣1.5) time using
𝑂(∣𝐸∣) space, where 𝑅 = 𝐷𝑙 \ 𝐷𝑢 with 𝐷𝑙 = 𝐶𝛼+1,𝛽+1

and 𝐷𝑢 = 𝐶
2𝛼+1,2𝛽+1

respectively.

Proof. To prove the correctness, we need to prove that assigning the indegree of edges in

𝐸×(𝐷𝑙 \ 𝐷𝑢, 𝐷𝑢 ) to 𝐷𝑙 \ 𝐷𝑢 is correct, that is, to prove (1) it allows the nodes in 𝐷𝛼,𝛽 to output

correctly, and (2) it does not cause nodes outside 𝐷𝛼,𝛽 to output incorrectly. For (1), assume for

contradiction that some nodes 𝐻 ⊆ 𝑅 ∩ 𝐷𝛼,𝛽 belongs to 𝐷𝛼,𝛽 but is not output correctly, then

the indegree of nodes in 𝐻 in the re-orientation network is ∑𝑥∈𝐻 𝑑𝑥 ≤ 𝛼 ⋅ ∣𝐻𝑈 ∣ + 𝛽 ⋅ ∣𝐻𝑉 ∣, thus
∣𝐸(𝐻 )∣ + ∣𝐸×(𝐻,𝐷𝛼,𝛽 \ 𝐻 )∣ ≤ 𝛼 ⋅ ∣𝐻𝑈 ∣ + 𝛽 ⋅ ∣𝐻𝑉 ∣. However, according to Theorem 2, we have

∣𝐸(𝐻 )∣ + ∣𝐸×(𝐻,𝐷𝛼,𝛽 \ 𝐻 )∣ > 𝛼 ⋅ ∣𝐻𝑈 ∣ + 𝛽 ⋅ ∣𝐻𝑉 ∣, which is a contradiction. For (2), we can use a

similar method assuming for contradiction that some node 𝐻 ∈ (𝑈 ∪𝑉 ) \ 𝐷𝛼,𝛽 is output to prove.

To prove the complexity, it takes 𝑂(∣𝐸∣) time complexity to compute 𝐶𝛼+1,𝛽+1
and 𝐶

2𝛼+1,2𝛽+1

[17] and handle the edges in 𝐸×(𝑅, 𝐷𝑢 ), and since other calculations are conducted in the induced

subgraph of 𝑅, the network flow only requires 𝑂(∣𝐸(𝑅)∣1.5) time. Summing up, the time complexity

is 𝑂(∣𝐸∣ + ∣𝐸(𝑅)∣1.5), and the space complexity is graph size 𝑂(∣𝐸∣). □

We can first calculate 𝐶𝛼+1,𝛽+1
and 𝐶

2𝛼+1,2𝛽+1
and then call DSS++(𝐺, 𝛼, 𝛽,𝐶𝛼+1,𝛽+1

,𝐶
2𝛼+1,2𝛽+1

)
to compute 𝐷𝛼,𝛽 . Since ∣𝐸(𝑅)∣ is often much smaller than ∣𝐸∣, this core reduction method can

significantly reduce the computation scale and time, as confirmed by our experiments.

5 Density Decomposition Algorithms
In this section, we propose two algorithms for density decomposition computation, namely DD
and DD+, to find all non-empty (𝛼, 𝛽)-dense subgraphs. The DD algorithm uses the dense subgraph

search algorithms to compute the density decomposition layer by layer. However, this basic al-

gorithm involves a large number of redundant computations, making it inefficient. Therefore, a

novel and improved algorithm DD+ based on the hierarchical characteristics of dense subgraphs is

presented, which greatly reduces redundant computations by using a carefully-designed divide-

and-conquer technique to continuously reduce the graph.

5.1 The Basic Algorithm: DD
Using the dense subgraph search algorithm DSS++, the density subgraph decomposition can be

computed layer by layer. Based on this idea, we propose the DD algorithm as shown in Algorithm 4.

Specifically, DD enumerates all combinations of 𝛼 and 𝛽 through two nested loops (lines 1-2). After

fixing 𝛼 and 𝛽 , the algorithm prepares the subgraphs 𝐷𝑙 and 𝐷𝑢 as the two inputs for DSS++ (lines

3-5), and then invokes DSS++(𝐺, 𝛼, 𝛽, 𝐷𝑙 , 𝐷𝑢 ) (line 6). If 𝐷𝛼,𝛽 = ∅, it indicates that for the current 𝛼 ,
the maximum value of 𝛽 has been enumerated, and the algorithm should proceed to the next 𝛼

(lines 7-8). If for some enumeration of 𝛽 , even when 𝛽 = 0, 𝐷𝛼,0 is empty, it means that the current
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Algorithm 4: DD(𝐺)
Input: A bipartite graph𝐺 .

Output: All non-empty 𝐷𝛼,𝛽 .

1 for 𝛼 = 0, 1,⋯ do
2 for 𝛽 = 0, 1,⋯ do
3 𝐷𝑙 ← 𝐶𝛼+1,𝛽+1

; 𝐷𝑢 ← 𝐶
2𝛼+1,2𝛽+1

;

4 if 𝐷𝛼−1,𝛽 has been computed then 𝐷𝑙 ← 𝐷𝑙 ∪𝐷𝛼−1,𝛽 ;

5 if 𝐷𝛼,𝛽−1
has been computed then 𝐷𝑙 ← 𝐷𝑙 ∪𝐷𝛼,𝛽−1

;

6 𝐷𝛼,𝛽 ← DSS++(𝐺,𝛼, 𝛽, 𝐷𝑙 , 𝐷𝑢 );
7 if 𝐷𝛼,𝛽 ≠ ∅ then output 𝐷𝛼,𝛽 ;

8 else break the loop;

9 if 𝐷𝛼,0 = ∅ then return;

𝛼 is sufficiently large, and all non-empty 𝐷𝛼,𝛽 have been enumerated, so the algorithm returns (line

9).

The correctness of DD can be directly derived from the correctness of DSS++, thus we omit its

correctness proof. For the complexity of DD, its time and space complexity can be bounded by

𝑂(𝑙𝑎𝑦𝑒𝑟 ⋅ ∣𝐸∣1.5) and𝑂(∣𝐸∣) respectively, where 𝑙𝑎𝑦𝑒𝑟 is the number of layers in the dense subgraph

decomposition, i.e., the number of combinations of 𝛼 and 𝛽 that make 𝐷𝛼,𝛽 non-empty. Below, we

give a lower bound of 𝑙𝑎𝑦𝑒𝑟 .

Theorem 9. Given𝐺 , let 𝑑𝑈
max

= max𝑢∈𝑈 𝑑𝑢 , 𝑑
𝑉
max

= max𝑣∈𝑉 𝑑𝑣 . We have the maximum 𝛼
max

(resp.,
𝛽

max
) such that 𝐷𝛼

max
,0 ≠ ∅ (resp., 𝐷

0,𝛽
max

≠ ∅) equals to 𝑑𝑈
max

− 1 (resp., 𝑑𝑉
max

− 1), and the number of
layers in the density decomposition satisfies 𝑙𝑎𝑦𝑒𝑟 ≥ 𝑑𝑈

max
+ 𝑑𝑉

max
+ 𝑝2 − 1, where 𝑝 is the maximum

number such that 𝐷𝑝,𝑝 ≠ ∅.

Proof. Construct such an orientation: all edges are oriented toward the set𝑈 , then for any 𝛼 and

𝛽 = 0, the orientation meets the definition of a dense subgraph. Clearly, according to the definition,

𝐷𝛼,0 consists of all nodes in the set𝑈 with a degree greater than 𝛼 and their neighbors. Therefore,

𝐷𝛼,0 is non-empty only when 𝛼 ≤ 𝑑
𝑈
max

− 1, and similarly, 𝐷
0,𝛽 is non-empty only when 𝛽 ≤ 𝑑

𝑉
max

− 1.

In summary, 𝐷
0,0,⋯, 𝐷𝑑𝑈

max
−1,0, these 𝑑

𝑈
max

subgraphs are non-empty; 𝐷
0,0,⋯, 𝐷0,𝑑𝑉

max
−1
, these 𝑑

𝑉
max

subgraphs are non-empty; and 𝐷𝛼,𝛽 is also non-empty for any 𝛼 = 1,⋯, 𝑝 and 𝛽 = 1,⋯, 𝑝 . Putting it

all together, we have 𝑙𝑎𝑦𝑒𝑟 ≥ 𝑑
𝑈
max

+𝑑𝑉
max

+ 𝑝2 − 1, where the subtraction of 1 is due to the repeated

calculation of one 𝐷
0,0. □

Real-world large graphs may have a large 𝑑
𝑈
max

and 𝑑
𝑉
max

(e.g., in our experiments, the 𝑑
𝑉
max

of

Twitter is nearly 3 million), thus 𝑙𝑎𝑦𝑒𝑟 can also be very large, impacting the scalability of algorithm

DD. The inefficiency arises due to DD requiring numerous repetitive computations. Specifically,

prior to enumerating 𝐷𝛼,𝛽 , the algorithm computes 𝐷𝛼,0, 𝐷𝛼,1,⋯, 𝐷𝛼,𝛽−1
, with these calculations

often involving 𝐷𝛼,𝛽 itself. Consequently, 𝐷𝛼,𝛽 ends up being recalculated up to 𝛽 times. This

redundancy becomes pronounced when 𝛽 is large, significantly hampering efficiency.

5.2 The Improved Algorithm: DD+
To address the issue of redundant calculations in DD, we propose a novel divide-and-conquer

technique. Assuming that 𝛼 is now fixed, we need to calculate all 𝐷𝛼,0, 𝐷𝛼,1, 𝐷𝛼,2,⋯. According

to the idea of DD, it calculates 𝐷𝛼,0, 𝐷𝛼,1,⋯ sequentially. However, using the divide-and-conquer

technique, we can find a 𝛽𝑚 and compute 𝐷𝛼,𝛽𝑚 and 𝐷𝛼,𝛽𝑚+1
first. Then, based on the hierarchy
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Algorithm 5: DD+(𝐺)
Input: A bipartite graph𝐺 .

Output: All non-empty 𝐷𝛼,𝛽 .

1 𝑝 ← the maximum integral such that 𝐷𝑝,𝑝 ≠ ∅;

2 𝑑
𝑈
max

← max𝑢∈𝑈 𝑑𝑢 (𝐺), 𝑑𝑉
max

← max𝑣∈𝑉 𝑑𝑣 (𝐺);
3 for 𝛼 = 0, 1,⋯, 𝑝 do
4 𝑇 = {𝑢 ∈ 𝑈 ∣𝑑𝑢 (𝐺) > 𝛼};
5 𝐷𝛼,0 ← 𝑇 ∪ {the neighbor nodes of𝑇 }; 𝐷

𝛼,𝑑𝑉
max

← ∅;

6 Divide-a(𝐷𝛼,0, 𝐷𝛼,𝑑𝑉
max

);

7 for 𝛽 = 0, 1,⋯, 𝑝 do
8 𝑇 = {𝑣 ∈ 𝑉 ∣𝑑𝑣 (𝐺) > 𝛽};
9 𝐷

0,𝛽 ← 𝑇 ∪ {the neighbor nodes of𝑇 }; 𝐷
𝑑𝑈

max
,𝛽

← ∅;

10 Divide-b(𝐷
0,𝛽 , 𝐷𝑑𝑈

max
,𝛽
);

11 Function Divide-a(𝐷𝛼,𝛽𝑙
, 𝐷𝛼,𝛽𝑢 )

12 if 𝛽𝑢 − 𝛽𝑙 ≤ 1 or 𝐷𝛼,𝛽𝑙
= 𝐷𝛼,𝛽𝑢 then return;

13 Perform binary search to find the maximum integral 𝛽𝑚 such that ∣𝐸(𝐷𝛼,𝛽𝑙
\𝐷𝛼,𝛽𝑚 )∣ < ∣𝐸(𝐷𝛼,𝛽𝑙

\𝐷𝛼,𝛽𝑢 )∣/2;

14 𝐷𝛼,𝛽𝑚 ← DSS++(𝐺,𝛼, 𝛽𝑚, 𝐷𝛼,𝛽𝑙
, 𝐷𝛼,𝛽𝑢 );

15 𝐷𝛼,𝛽𝑚+1
← DSS++(𝐺,𝛼, 𝛽𝑚 + 1, 𝐷𝛼,𝛽𝑙

, 𝐷𝛼,𝛽𝑢 );
16 Output 𝐷𝛼,𝛽𝑚 and 𝐷𝛼,𝛽𝑚+1

;

17 Divide-a(𝐷𝛼,𝛽𝑙
, 𝐷𝛼,𝛽𝑚 );

18 Divide-a(𝐷𝛼,𝛽𝑚+1
, 𝐷𝛼,𝛽𝑢 );

19 Function Divide-b(𝐷𝛼𝑙 ,𝛽
, 𝐷𝛼𝑢 ,𝛽 )

20 Same as lines 6-12 but interchanging 𝛼 with 𝛽 ;

of the dense subgraphs, we can continue to calculate 𝐷𝛼,0, 𝐷𝛼,1,⋯, 𝐷𝛼,𝛽𝑚−1
in 𝐷𝛼,0 \ 𝐷𝛼,𝛽𝑚 instead

of the whole graph, thus reducing the computation scale. On the other hand, we can continue to

calculate𝐷𝛼,𝛽𝑚+2
, 𝐷𝛼,𝛽𝑚+3

,⋯ in𝐷𝛼,𝛽𝑚+1
instead of the whole graph. The advantage of this approach

is that when calculating in 𝐷𝛼,0 \ 𝐷𝛼,𝛽𝑚 , the computation scale does not involve 𝐷𝛼,𝛽𝑚 , ensuring

that the nodes in 𝐷𝛼,𝛽𝑚 are not calculated redundantly.

Therefore, a Divide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑢 ) function can be designed, which inputs subgraphs 𝐷𝛼,𝛽𝑙 and

𝐷𝛼,𝛽𝑢 , and then computes all subgraphs between them,𝐷𝛼,𝛽𝑙+1
, 𝐷𝛼,𝛽𝑙+2

,⋯, 𝐷𝛼,𝛽𝑢−1
. The computation

method is divide-and-conquer, that is, first determining a pivot number 𝛽𝑚 between 𝛽𝑙 and 𝛽𝑢 ,

then calling the DSS++ algorithm to compute 𝐷𝛼,𝛽𝑚 and 𝐷𝛼,𝛽𝑚+1
, and then recursively calling

Divide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑚 ) andDivide-a(𝐷𝛼,𝛽𝑚+1
, 𝐷𝛼,𝛽𝑢 ). The recursion ends when 𝛽𝑢−𝛽𝑙 ≤ 1 or𝐷𝛼,𝛽𝑙 =

𝐷𝛼,𝛽𝑢 . Clearly, in these two cases, there are no finer subgraphs between 𝐷𝛼,𝛽𝑙 and 𝐷𝛼,𝛽𝑢 . Through

this recursive divide-and-conquer strategy, callingDivide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑢 ) can compute all subgraphs

𝐷𝛼,𝛽𝑙+1
,⋯, 𝐷𝛼,𝛽𝑢−1

.

The remaining question is how to select 𝛽𝑚 . Since 𝛽𝑚 serves as the pivot number to divide

the entire graph, we need to ensure that the divided two subgraphs are as balanced as possible.

Otherwise, computing the larger part will be time-consuming. Therefore, 𝛽𝑚 should aim to split

the current edge set into two roughly equal parts, i.e., ensuring that both ∣𝐸(𝐷𝛼,𝛽𝑙 \ 𝐷𝛼,𝛽𝑚 )∣ and
∣𝐸(𝐷𝛼,𝛽𝑚+1

\𝐷𝛼,𝛽𝑢 )∣ are less than half of ∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑢 )∣. This can be achieved by selecting 𝛽𝑚 as

the maximum integer such that ∣𝐸(𝐷𝛼,𝛽𝑙 \ 𝐷𝛼,𝛽𝑚 )∣ <
1

2
∣𝐸(𝐷𝛼,𝛽𝑙 \ 𝐷𝛼,𝛽𝑢 )∣, guaranteeing that the two

subdivided subgraphs are both smaller than half of the original graph.

Based on the above analysis, the density decomposition can be calculated as follows: starting

from 0, incrementally enumerate 𝛼 . For each 𝛼 , start the recursion by calling Divide-a(𝐷𝛼,0, 𝐷𝛼,𝑑𝑉
max

),
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Divide-a

𝐷𝐷5,0 ∖ 𝐷𝐷5,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉

𝐸𝐸 = 27400

𝐷𝐷5,0 ∖ 𝐷𝐷5,19
𝐸𝐸 = 13334

𝐷𝐷5,20 ∖ 𝐷𝐷5,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉

𝐸𝐸 = 13678

𝛽𝛽𝑚𝑚 = 19 Divide-a

𝐷𝐷5,0 ∖ 𝐷𝐷5,5
𝐸𝐸 = 6429

𝐷𝐷5,6 ∖ 𝐷𝐷5,19
𝐸𝐸 = 6170

𝐷𝐷5,20 ∖ 𝐷𝐷5,27
𝐸𝐸 = 2715

𝐷𝐷5,28 ∖ 𝐷𝐷5,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉

𝐸𝐸 = 5217

𝛽𝛽𝑚𝑚 = 5 𝛽𝛽𝑚𝑚 = 27Divide-a Divide-a Divide-a Divide-a

Fig. 4. An example of Divide-a(𝐷5,0, 𝐷5,𝑑𝑉
max

) on DBpedia dataset.

where 𝐷𝛼,0 can be obtained by the method in the proof of Theorem 9, and 𝐷𝛼,𝑑𝑉
max

= ∅. After

that, all non-empty 𝐷𝛼,0, 𝐷𝛼,1,⋯ for the current 𝛼 can be obtained. Once 𝛼 is enumerated to 𝑑
𝑈
max

,

the density decomposition can be obtained. However, because 𝑑
𝑈
max

can be very large, such an

enumeration method will call Divide-a too many times, causing inefficiency. A Divide-b function

can be symmetrically designed, and then the enumeration strategy can be changed as follows:

similarly, first enumerate 𝛼 , but only enumerate it to 𝑝 , where 𝑝 is the maximum number such

that 𝐷𝑝,𝑝 ≠ ∅. This way, Divide-a can calculate all 𝐷𝛼,𝛽 with 𝛼 less than or equal to 𝑝 . Then, we

enumerate 𝛽 , from 0 to 𝑝 . This way, Divide-b can symmetrically calculate all 𝐷𝛼,𝛽 with 𝛽 less than

or equal to 𝑝 . Since 𝑝 is the maximum integer such that 𝐷𝑝,𝑝 ≠ ∅, this enumeration method can

calculate all layers in the density decomposition with only calling Divide-a or Divide-b for 2𝑝 + 2

times, which is typically much smaller than 𝑑
𝑈
max

, as confirmed in our experiments.

We develop the DD+ algorithm (Algorithm 5) based on this above idea. First, the algorithm

calculates 𝑝 (line 1), which can be achieved through binary search. Then, the algorithm enumerates

𝛼 (line 3). For a specific 𝛼 , it first calculates 𝐷𝛼,0 and 𝐷𝛼,𝑑𝑉
max

, then calls Divide-a(𝐷𝛼,0, 𝐷𝛼,𝑑𝑉
max

) to
compute dense subgraphs (lines 5-6). When calling Divide-a, the algorithm first checks whether

the recursion endpoint is reached (line 12), then uses binary search to determine the pivot number

𝛽𝑚 (line 13). After calculating 𝐷𝛼,𝛽𝑚 and 𝐷𝛼,𝛽𝑚+1
, it begins deeper recursion (lines 14-18). After 𝛼 is

enumerated to 𝑝 , the algorithm symmetrically enumerates 𝛽 (lines 7-10). Once 𝛽 is also enumerated

to 𝑝 , the algorithm has calculated all layers in the density decomposition. Below, we give an

illustrative example of Divide-a.

Example 4. Assume that the dense subgraph is computed by calling Divide-a(𝐷
5,0, 𝐷5,𝑑𝑉

max

) on the
dataset DBpedia (details in the experiments section), as shown in Figure 4. The root node in the figure
represents the starting point of the divide-and-conquer process, where the subgraph 𝐷

5,0 \ 𝐷5,𝑑𝑉
max

is
divided, and the number of edges in the induced subgraph is 27400. By using binary search, 𝛽𝑚 = 19 is
determined. Then, the algorithm calls Divide-a(𝐷

5,0, 𝐷5,19
) and Divide-a(𝐷

5,20
, 𝐷

5,𝑑𝑉
max

), respectively
calculating the subgraphs 𝐷

5,0 \ 𝐷5,19
and 𝐷

5,20
\ 𝐷

5,𝑑𝑉
max

, with the induced subgraphs having 13334
and 13678 edges respectively, both less than half of 27400. The process is repeated to further divide
the subgraphs, reducing the edge set by half each time, which rapidly reduces the computation scale,
significantly enhancing efficiency.

The following theorem shows the correctness of Algorithm 5.

Theorem 10. DD+ (Algorithm 5) can correctly compute the density decomposition of the input
bipartite graph.

Proof. For Divide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑢 ), since the divide-and-conquer strategy only limits the scale

of the algorithm’s computation, each layer still needs to call DSS++ to compute. Furthermore,
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line 12 of DD+ ensures that every non-empty 𝐷𝛼,𝛽 can be computed. Therefore, based on the

hierarchy of dense subgraph and the correctness of DSS++, Divide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑢 ) can output

all non-empty 𝐷𝛼,𝛽𝑙+1
,⋯, 𝐷𝛼,𝛽𝑢−1

. Similarly, Divide-b(𝐷𝛼𝑙 ,𝛽 , 𝐷𝛼𝑢 ,𝛽 ) can also output all non-empty

𝐷𝛼𝑙+1,𝛽 ,⋯, 𝐷𝛼𝑢−1,𝛽 . Since 𝑝 is the maximum integer satisfying 𝐷𝑝,𝑝 ≠ ∅, enumerating 𝛼 and 𝛽 to 𝑝

respectively can compute all layers of the density decomposition. □

We analyze the time and space complexity of DD+ in the following theorem.

Theorem 11. The time and space complexity of DD+ is 𝑂(𝑝 ⋅ ∣𝐸∣1.5 ⋅ log𝑑
max

) and 𝑂(∣𝐸∣ + ∣𝑈 ∪
𝑉 ∣ log ∣𝐸∣), respectively, where 𝑑

max
= max𝑥∈𝑈∪𝑉 𝑑𝑥 (𝐺).

Proof. It is easy to show that the time complexity for DD+ to obtain 𝑝 in line 1 through binary

search is 𝑂(∣𝐸∣1.5 log𝑑
max

). Next, we analyze the complexity of Divide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑢 ). Since all

computations in Divide-a can be completed within the induced subgraph of 𝐷𝛼,𝛽𝑙 \ 𝐷𝛼,𝛽𝑢 , the
binary search in line 13 can be completed in 𝑂(∣𝐸(𝐷𝛼,𝛽𝑙 \ 𝐷𝛼,𝛽𝑢 )∣

1.5
log𝑑

max
) time. Since 𝛽𝑚 is the

maximum integer such that ∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑚 )∣ < ∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑢 )∣/2, we have ∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑚+1
)∣ ≥

∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑢 )∣/2. Furthermore, since ∣𝐸(𝐷𝛼,𝛽𝑚+1
\𝐷𝛼,𝛽𝑢 )∣ ≤ ∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑢 )∣−∣𝐸(𝐷𝛼,𝛽𝑙 \𝐷𝛼,𝛽𝑚+1

)∣,
we get ∣𝐸(𝐷𝛼,𝛽𝑚+1

\ 𝐷𝛼,𝛽𝑢 )∣ ≤ ∣𝐸(𝐷𝛼,𝛽𝑙 \ 𝐷𝛼,𝛽𝑢 )∣/2. This indicates that the Divide-a algorithm

reduces the computational scale by half each recursion. According to the master theorem for divide-

and-conquer [5], the complexity of deeper recursion in lines 17-18 does not exceed the binary

search complexity in line 13. Thus, the time complexity of Divide-a(𝐷𝛼,𝛽𝑙 , 𝐷𝛼,𝛽𝑢 ) is 𝑂(∣𝐸(𝐷𝛼,𝛽𝑙 \
𝐷𝛼,𝛽𝑢 )∣

1.5
log𝑑

max
) ≤ 𝑂(∣𝐸∣1.5 log𝑑

max
). Since the DD+ algorithm calls Divide-a and Divide-b 2𝑝 + 2

times with a time complexity of 𝑂(∣𝐸∣1.5 log𝑑
max

), the total time complexity of the DD+ algorithm

is 𝑂(𝑝∣𝐸∣1.5 log𝑑
max

).
For the space complexity, besides the graph size 𝑂(∣𝐸∣), each level of recursion in Divide-a and

Divide-b needs to store the input subgraphs in memory, which requires 𝑂(∣𝑈 ∪𝑉 ∣) space. Since
each level of recursion reduces the number of edges by at least half, the recursion depth is at most

𝑂(log ∣𝐸∣). Therefore, the space complexity of DD+ is bounded by 𝑂(∣𝐸∣ + ∣𝑈 ∪𝑉 ∣ log ∣𝐸∣). □

If we consider a bipartite graph as a unipartite graph and set𝛼 = 𝛽 , then the problem of computing

𝑝 can be converted into the problem of computing pseudoarboricity [8]. It can be shown that 𝑝

equals pseudoarboricity minus 1 [8], where pseudoarboricity is a measure of the sparsity of a

graph. As observed in [9], pseudoarboricity tends to be a small constant in real-world graphs,

thus 𝑝 is typically small. Therefore, compared to the 𝑂(𝑙𝑎𝑦𝑒𝑟 ⋅ ∣𝐸∣1.5) time complexity of DD, the
𝑂(𝑝 ⋅ log𝑑

max
⋅ ∣𝐸∣1.5) time complexity of DD+ represents a significant improvement. This is because

𝑙𝑎𝑦𝑒𝑟 ≥ 𝑑
𝑈
max

+ 𝑑𝑉
max

+ 𝑝2 − 1 is typically much larger than 𝑝 ⋅ log𝑑
max

in real-world graphs. On

the other hand, although the space complexity of DD+ is 𝑂(∣𝐸∣ + ∣𝑉 ∣ log ∣𝐸∣), in large real-world

graphs it is often the case that ∣𝐸∣ > ∣𝑉 ∣ log ∣𝐸∣. Thus, the space complexity of DD+ is practically

linear, as confirmed in our experiments.

6 Experiments

Algorithms.We have implemented five algorithms: three (𝛼, 𝛽)-dense subgraph search algorithms,

DSS (Algorithm 1), DSS+ (Algorithm 2), and DSS++ (Algorithm 3), along with two density decom-

position algorithms, DD (Algorithm 4) and DD+ (Algorithm 5). Note that since our (𝛼, 𝛽)-dense
subgraph is a novel model specifically designed for bipartite graphs, there are no existing algo-

rithms capable of computing (𝛼, 𝛽)-dense subgraphs or density decomposition. Consequently, we

employ the basic versions of our algorithms, DSS and DD, as baseline methods for addressing the

(𝛼, 𝛽)-dense subgraph search and density decomposition problems, respectively. All algorithms are
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Table 1. Statistics of datasets
𝑑
𝑈
max

= max𝑢∈𝑈 𝑑𝑢 , 𝑑
𝑉
max

= max𝑣∈𝑉 𝑑𝑣 , 𝑝 is the maximum integer such that 𝐷𝑝,𝑝 ≠ ∅.
1𝐾 = 1, 000, 1𝑀 = 1, 000, 000, and 1𝐵 = 1, 000, 000, 000.

Name ∣𝑈 ∣ ∣𝑉 ∣ ∣𝐸∣ 𝑑
𝑈
max

𝑑
𝑉
max

𝑝

DBpedia 258.8K 7.8K 463.5K 31 24,821 7

Digg 139.4K 3.6K 3.0M 10,526 24,099 186

Enron 39.9K 28.1K 3.7M 2,120 7,190 212

IMDB 303.6K 896.3K 3.8M 1,334 1,590 20

Livejournal 3.2M 7.5M 112.3M 300 1,053,676 104

Yahoo 1.0M 625.0K 256.8M 307,205 468,366 1,006

Orkut 2.8M 8.7M 327.0M 40,425 318,240 438

Twitter 35.7M 40.1M 1.5B 770,155 2,997,469 1,427

implemented in C++ with O3 optimization. All experiments were conducted on a Linux system PC

with a 2.2GHz AMD 3990X 64-Core CPU and 256GB memory.

Datasets. We use 8 real-world datasets to evaluate the efficiency of different algorithms in our

experiments. These datasets can be downloaded from the Koblenz Network Collection (http:

//konect.cc/). The detailed statistics are shown in Table 1.

6.1 Performance Studies

Exp-1: Runtime of different dense subgraph search algorithms. In this experiment, we

compare the runtime of various dense subgraph search algorithms, with the results on 5 large

datasets shown in Figure 5. For a comprehensive comparison, we use three methods for setting the

parameters 𝛼 and 𝛽 : (1) 𝛼 = 𝛽 = ⌊𝑘 ⋅𝑝⌋; (2) 𝛼 = ⌊𝑘 ⋅𝑝⌋, 𝛽 = ⌊0.5 ⋅𝑝⌋; (3) 𝛼 = ⌊0.5 ⋅𝑝⌋, 𝛽 = ⌊𝑘 ⋅𝑝⌋, where
𝑘 is chosen from {0.1, 0.3, 0.5, 0.7, 0.9}. As can be seen, DSS is relatively inefficient, with runtime

exceeding 10
4

seconds across all datasets. In contrast, both the DSS+ and DSS++ algorithms can

output the (𝛼, 𝛽)-dense subgraph in less than 10
3

seconds within all parameter settings. Moreover,

the DSS++ algorithm is significantly faster than DSS+ on large graphs with the benefit of the core

reduction technique. For instance, on the Twitter dataset, when 𝛼 = 𝛽 = ⌊0.1 ⋅ 𝑝⌋, the runtimes of

DSS+ and DSS++ are 936.25 seconds and 195.47 seconds, respectively, with the latter achieving

a 4.7x speedup. Notably, even on super-large graphs with billions of edges like Twitter, DSS++
consistently completes the (𝛼, 𝛽)-dense subgraph search in approximately 200 seconds. These

results confirm the high efficiency of the proposed DSS++ algorithm.

To demonstrate the effectiveness of core reduction in DSS++, we record the time taken for core

reduction and the size of the reduced graph on five large datasets where 𝛼 = 𝛽 = ⌊0.5 ⋅ 𝑝⌋. The
results are depicted in Table 2, and similar results can also be observed for other values of 𝛼 and 𝛽 .

It is evident that the size of the graph significantly decreases after core reduction, falling to less

than 20% of its original size. Notably, for the Twitter dataset with billions of edges, the reduced

graph constitutes only 2.8% of the original. The time required for network flow computation of the

(𝛼, 𝛽)-dense subgraph search on these reduced graphs is minimal, with most of the time spent on

calculating 𝐶𝛼+1,𝛽+1
and 𝐶

2𝛼+1,2𝛽+1
. These findings suggest that the computational cost of DSS++

equipped with the core reduction strategy for (𝛼, 𝛽)-dense subgraph search is comparable to that of

computing (𝛼, 𝛽)-core subgraph.
Exp-2: Memory overheads of various dense subgraph search algorithms. The memory con-

sumption of our dense subgraph search algorithms is shown in Figure 6. Note that it is unnecessary

to vary 𝛼 and 𝛽 , since the memory overheads of various algorithms do not change with these

parameters. As can be seen, the memory occupancy of the DSS, DSS+, and DSS++ algorithms is

almost identical, as their space complexity is the graph size 𝑂(∣𝐸∣). For example, on Twitter dataset,
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(e) Twitter,
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(g) Livejournal,
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(i) Orkut, 𝛼 = ⌊𝑘 ⋅ 𝑝⌋,
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(k) IMDB, 𝛼 = ⌊0.5 ⋅ 𝑝⌋,
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(l) Livejournal,
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(m) Yahoo, 𝛼 = ⌊0.5 ⋅ 𝑝⌋,
𝛽 = ⌊𝑘 ⋅ 𝑝⌋

10
1

10
2

10
3

>10
4

0.1 0.3 0.5 0.7 0.9
k

R
u

n
ti

m
e 

(s
ec

)

DSS

DSS+

DSS++

(n) Orkut,
𝛼 = ⌊0.5 ⋅ 𝑝⌋, 𝛽 = ⌊𝑘 ⋅ 𝑝⌋
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(o) Twitter, 𝛼 = ⌊0.5 ⋅ 𝑝⌋,
𝛽 = ⌊𝑘 ⋅ 𝑝⌋

Fig. 5. Runtime of different (𝛼, 𝛽)-dense subgraph search algorithms, varying 𝛼 and 𝛽

Table 2. The effectiveness of core reduction in DSS++ (sec)
‘C’ represents the time consumption of core reduction, ‘D’ represents the network flow time after reduction, ‘Sum’

represents the total time consumption, and we set 𝛼 = 𝛽 = ⌊0.5 ⋅ 𝑝⌋.
Dataset ∣𝐸∣ ∣𝐸(𝑅)∣ ratio C D Sum

IMDB 3.8M 714.3K 18.8% 1.8 0.2 2.0

Livejournal 112.3M 10.9M 9.7% 21.7 2.9 24.6

Yahoo 256.8M 17.1M 6.7% 15.4 3.7 19.1

Orkut 327.0M 27.3M 8.3% 66.3 8.3 74.6

Twitter 1.5B 42.0M 2.8% 110.7 69.6 180.3

10
2

10
3

10
4

10
5

IMDB
Livejournal

Yahoo
Orkut

Twitter

M
em

o
ry

 (
M

B
)

DSS

DSS+

DSS++

Fig. 6. Memory overhead of different (𝛼, 𝛽)-
dense subgraph search algorithms.
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Fig. 7. Runtime and memory overheads of density decom-
position algorithms.

DSS, DSS+, and DSS++ consume 31.2 GB, 32.2 GB, and 33.6 GB respectively, while the original

bipartite graph takes 28.9 GB. These results demonstrate the memory efficiency of our proposed

algorithms.

Exp-3: Evaluation of various denstiy decomposition algorithms. In this experiment, we

compare the runtime and memory overhead of our proposed density decomposition algorithms,

with the results depicted in Figure 7. As seen in Figure 6a, DD takes over 10
4

seconds on the Digg,
Enron, and Livejournal datasets to compute the density decomposition, while DD+ consumes up to

244.5x less time than DD. For example, on the DBpedia dataset, DD takes 672.5 seconds to complete
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Fig. 8. Scalability test of the dense subgraph
search algorithms on Twitter (𝛼 = 𝛽 = ⌊0.5 ⋅ 𝑝⌋)
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Fig. 9. Scalability test of the density decomposi-
tion algorithms on IMDB

the decomposition, while DD+ consumes 2.75 seconds, achieving a speedup of more than two

orders of magnitude. These results demonstrate the high efficiency of DD+. For memory overheads,

as shown in Figure 6b, DD and DD+ consume around the same amount of memory, indicating that

our proposed algorithms are highly space efficient.

Exp-4: Scalability tests. We generate 8 subgraphs for each dataset by randomly sampling the

node set 𝑈 ∪𝑉 and edge set 𝐸, and then perform our algorithms on these subgraphs. The running

times of the dense subgraph search algorithms on Twitter and density decomposition algorithms

on IMDB are shown in Figure 8 and Figure 9, respectively. The outcomes on the other datasets are

consistent. For the dense subgraph search algorithms DSS+ and DSS++, DSS++ is consistently faster
than DSS+ across all data scales, as expected. The runtime of DSS+ increases significantly with the

data scale, while the runtime of DSS++ increases more smoothly. For the density decomposition

algorithms, the runtime of DD+ increases more gently as the data size increases and is consistently

lower than the runtime of DD. These results demonstrate the high scalability of the proposed

DSS++ and DD+ algorithms.

Exp-5: Comparison of different models. In this experiment, we compare the runtime, mem-

ory consumption, density, and conductance of different models. Density (Definition 3) measures

the internal structure tightness of the subgraph, and the conductance of a subgraph 𝑋 , defined

as
∣𝐸×(𝑋,(𝑈∪𝑉 )\𝑋 )∣

∑𝑥∈𝑋 𝑑𝑥
, indicates the closeness of the subgraph to the vertices outside the subgraph.

Intuitively, a cohesive subgraph should exhibit high density and low conductance. The models

compared include our proposed dense subgraph (Definition 1), core subgraph [22], bitruss [35],

biplex [15], and biclique [13]. For our dense subgraph, we use the proposed DSS++ algorithm to

compute 𝐷𝑝,𝑝 , where 𝑝 is the largest integer such that 𝐷𝑝,𝑝 ≠ ∅. For the core subgraph, we compute

𝐶𝛿,𝛿 using the state-of-the-art algorithm proposed in [17], where 𝛿 is the largest integer such that

𝐶𝛿,𝛿 ≠ ∅. For bitruss, we implemented the state-of-the-art algorithm proposed in [35] to compute

the 𝑘
∗
-bitruss, where 𝑘

∗
is the largest integer such that the 𝑘

∗
-bitruss is non-empty. For biplex and

biclique, we use the codes from [15] and [13] to compute the maximum 1-biplex and biclique in the

graph, respectively.

The results on the IMDB dataset are shown in Table 3 (similar results can be obtained on other

datasets). For runtime, our dense subgraph and core subgraph have the shortest runtime, being 1-2

orders of magnitude faster than bitruss, biplex, and biclique. For memory usage, the algorithms for

our proposed dense subgraph, core subgraph, and bitruss all have space complexity of the graph

size 𝑂(∣𝐸∣), thus they consume less memory than biplex and biclique. For density and conductance,

our proposed dense subgraph significantly outperforms the other models, demonstrating high

effectiveness of our proposed model.

Specifically, the runtime of the core subgraph is only 0.05 seconds faster than that of the proposed

dense subgraph, but its density and conductance are significantly worse than those of our proposed

dense subgraph. Moreover, even if we do not use the maximum integer 𝛿 that makes 𝐶𝛿,𝛿 ≠ ∅, and
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Table 3. Comparison of different models on dataset IMDB.

Models Runtime Memory Density Conductance

dense subgraph [ours] 0.20 155.7MB 41.487 0.493
core subgraph [22] 0.15 152.3MB 33.955 0.552

bitruss [35] 31.59 153.1MB 34.346 0.516

biplex [15] 8.08 377.8MB 18.632 0.809

biclique [13] 21.2 801.1MB 16.492 0.838

𝐶𝐶𝛿𝛿−2,𝛿𝛿−2𝐷𝐷𝑝𝑝,𝑝𝑝

𝐶𝐶𝛿𝛿−2,𝛿𝛿−2\𝐷𝐷𝑝𝑝,𝑝𝑝

Fig. 10. 𝐷𝑝,𝑝 and 𝐶𝛿−2,𝛿−2 on dataset IMDB.

instead use𝐶𝛿−1,𝛿−1
,𝐶𝛿−2,𝛿−2

, or other core subgraph parameters, the density still cannot reach that

of 𝐷𝑝,𝑝 . For example, as shown in Figure 10, 𝐶𝛿−2,𝛿−2
consists of two parts: one is the denser 𝐷𝑝,𝑝

with a density of 41.487, and the other is the sparser𝐶𝛿−2,𝛿−2
\𝐷𝑝,𝑝 with a density of 36.754. Besides,

the subgraphs induced by 𝐷𝑝,𝑝 and𝐶𝛿−2,𝛿−2
\𝐷𝑝,𝑝 contain 106,223 and 2,801 edges, respectively, but

there are only ∣𝐸×(𝐷𝑝,𝑝 ,𝐶𝛿−2,𝛿−2
\ 𝐷𝑝,𝑝 )∣ = 15 edges connecting these two parts. This suggests that

𝐷𝑝,𝑝 and𝐶𝛿−2,𝛿−2
\𝐷𝑝,𝑝 belong to different communities, yet they are grouped together by𝐶𝛿−2,𝛿−2

.

A more reasonable partitioning method would be to discard the sparser 𝐶𝛿−2,𝛿−2
\ 𝐷𝑝,𝑝 and retain

only the denser 𝐷𝑝,𝑝 , as 𝐷𝑝,𝑝 does. This demonstrates that the degree-based core subgraph model

cannot partition subgraphs as accurately as our proposed density-based dense subgraph model.

In summary, our proposed dense subgraph consumes little runtime and memory while producing

a high-density subgraph, indicating that our dense subgraph model is more well-suited for detecting

densely-connected subgraphs compared with other models.

6.2 Case Studies

Comparison of (𝛼, 𝛽)-dense subgraph and (𝛼, 𝛽)-core models. We conduct a case study on

the movie ratings dataset, Movielens, downloaded from https://grouplens.org/datasets/movielens/.

This dataset contains ∣𝑈 ∣ = 6.0K users, ∣𝑉 ∣ = 4.0K movies, and ∣𝐸∣ = 1.0M edges representing user

ratings of movies. We perform the density decomposition and core decomposition algorithms on

Movielens and use two metrics: density and conductance to evaluate decomposed subgraphs.

The density (Definition 3) and conductance (definition in Exp-5) of (𝛼, 𝛽)-dense subgraphs and
(𝛼, 𝛽)-cores are shown in Figure 11. As seen in Figure 11a and Figure 11c, with the increase of

𝛼 and 𝛽 , the density of 𝐷𝛼,𝛽 shows a monotonically increasing trend, which means that 𝐷𝛼,𝛽 as

a density-based subgraph can well reflect the density structure of the graph. Additionally, the

conductance of 𝐷𝛼,𝛽 remains low, suggesting that the connection between 𝐷𝛼,𝛽 and (𝑈 ∪𝑉 ) \ 𝐷𝛼,𝛽
is not tight, highlighting that 𝐷𝛼,𝛽 is a relatively independent community. In contrast, as shown

in Figure 11b and Figure 11d, when 𝛼 and 𝛽 are large, the density of 𝐶𝛼,𝛽 decreases drastically,

resulting in 𝐶𝛼,𝛽 no longer being a densely-connected community. Moreover, its conductance

increases dramatically, suggesting that its connection with (𝑈 ∪𝑉 ) \𝐶𝛼,𝛽 is very tight and thus

𝐶𝛼,𝛽 might be a subgraph forcibly separated from a tightly-connected community. For instance,

let 𝑝 and 𝛿 be the largest integers such that 𝐷𝑝,𝑝 ≠ ∅ and 𝐶𝛿,𝛿 ≠ ∅, respectively. The densities of
𝐷𝑝,𝑝 and 𝐶𝛿,𝛿 are 371.8 and 341.1, and the conductances are 0.340 and 0.534 respectively. These

results indicate that our (𝛼, 𝛽)-dense subgraph model is denser and more independent compared
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(a) Density of dense
subgraphs

(b) Density of core
subgraphs

(c) Conductance of dense
subgraphs

(d) Conductance of core
subgraphs

Fig. 11. Density and conductance of dense subgraphs and core subgraphs on dataset Movielens (∣𝐸∣ = 1.0𝑀 ,
∣𝑈 ∣ = 6.0𝐾 , ∣𝑉 ∣ = 4.0𝐾 ).
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(A total of 57 colors)

(c) The 𝑘-bitruss
subgraph model.

●: maximum biclique
●: 1-biplex

(d) The biclique and the
𝑘-biplex model.

Fig. 12. Visualization on dataset Email.

to the (𝛼, 𝛽)-core. The density decomposition is density-based and does not force the division of

tightly-connected communities, whereas core decomposition is likely to do so. This result suggests

that our density decomposition is superior to core decomposition for characterizing hierarchical

dense subgraphs in bipartite graphs.

The hierarchy of different models on dataset Email. In this case study, we visualize the

hierarchy of different models, i.e., we show how the proposed dense subgraph 𝐷𝛼,𝛽 , core subgraph

𝐶𝛼,𝛽 [22], and 𝑘-bitruss 𝐵𝑘 [35] change with their parameters 𝛼 , 𝛽 , and 𝑘 , and we compare them

with the maximum biclique [13] and 𝑘-biplex [15] model. We use the dataset Email1 (∣𝑈 ∪𝑉 ∣ =
220, ∣𝐸∣ = 2094), which represents email communication between users. This dataset contains

three ground-truth communities, as shown in Figure 12a. The results of different models on this

dataset are shown in Figure 12. Firstly, from Figure 12a, we can see that 𝐷
10,10

, 𝐷
8,8 \ 𝐷9,9, and

𝐷
7,7 \ 𝐷

8,8 approximately capture communities #1, #2, and #3, respectively. Specifically, 𝐷
10,10

contains 112/142 = 78.9% of the nodes in community #1; 𝐷
8,8 \ 𝐷9,9 contains 40/41 = 97.6% of the

nodes in community #2; and 𝐷
7,7 \ 𝐷8,8 contains all the nodes of community #3. This indicates that

the proposed dense subgraph can accurately partition the communities.

In contrast, from Figure 12b, we observe that the communities partitioned by the core subgraph

are inaccurate. No matter how the parameters of the core subgraph are chosen (e.g., whether

𝐶
14,14

, 𝐶
13,13

, or any other 𝐶𝛼,𝛽 ), they cannot detect community #1 as accurately as the dense

subgraph 𝐷
10,10

. For example, 𝐶
14,14

contains only 69/142 = 48.6% of the nodes in community #1,

fewer than the 112/142 = 78.9% nodes contained in 𝐷
10,10

. Moreover, community #2 is split into

two communities by 𝐶
12,12

\ 𝐶
13,13

and 𝐶
9,9 \ 𝐶10,10

, which is unreasonable. Therefore, the core

subgraph fails to accurately partition the Email graph into three communities. For the 𝑘-bitruss, it

divides the Email graph into 57 different bitruss subgraphs, which is too many and unnecessary.

Additionally, 𝐵
132

contains only 66/142 = 46.5% of the nodes in community #1, also fewer than the

112/142 = 78.9% nodes contained in 𝐷
10,10

. This shows that bitruss cannot accurately partition the

communities either. Regarding the maximum biclique and 𝑘-biplex, Figure 12d displays the results

1

Data source: https://snap.stanford.edu/data/email-Eu-core.html, where we extract three ground-truth communities within

this dataset.
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dense subgraph

core subgraph
bitruss

(a) Results on the Club dataset.

Community #1 = 𝐷𝐷3,2

Community #2 = 𝐵𝐵18
𝐶𝐶4,4 contains all nodes with green labels.

(b) Results on the Actor dataset.

Fig. 13. Visualization on dataset Club and Actor.

of a maximum biclique and 1-biplex in the Email dataset. It can be seen that both the maximum

biclique and the 1-biplex are small and cannot detect large communities like community #1. This is

because, although communities are relatively dense, they cannot satisfy the strict complete-graph-

based definitions of biclique and 1-biplex. Therefore, the maximum biclique and 𝑘-biplex cannot

accurately partition the communities of Email. In summary, the proposed dense subgraph provides

the most accurate partitioning of the communities.

Visualization on dataset Club.We conduct a case study on the Club dataset (downloaded from

http://www.konect.cc/networks/brunson_club-membership/), where the vertices in 𝑈 represent

persons, the vertices in 𝑉 represent organizations, and an edge represents that a person belongs to

an organization. We compute different dense subgraphs in Club including (𝛼, 𝛽)-core subgraph𝐶𝛼,𝛽 ,
𝑘-bitruss 𝐵𝑘 and (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 , and the results are shown in Figure 13a, where the

core subgraph is 𝐶
2,11

, the bitruss is the 10-bitruss (denoted by 𝐵
10
), and the dense subgraph is 𝐷

1,6.

These parameters are chosen to be the maximum values, meaning that there are no larger 𝛼 ,𝛽 ,𝑘

making 𝐶𝛼,𝛽 , 𝐷𝛼,𝛽 , and 𝐵𝑘 non-empty. As shown, 𝐷
1,6 contains a densely-connected community,

while𝐶
2,11

and 𝐵
10
are subgraphs forcibly separated from this community. This is also evidenced by

their density and conductance. The densities of 𝐷
1,6, 𝐶2,11

, and 𝐵
10
are 5.3, 4.7, and 4.9 respectively,

and their conductance are 0.297, 0.443, and 0.364 respectively. 𝐷
1,6 has the highest density and the

lowest conductance, indicating that it is a densely-connected community and is loosely connected

to the outside. This result further confirms the superior effectiveness of our model in representing

communities in bipartite graphs, compared to core-based or bitruss-based models.

Visualization on dataset Actor. We also conduct a case study on the Actor dataset (downloaded
from https://docs.conscia.ai/tutorials/example-movie-dataset), where the vertices in 𝑈 represent

actors, the vertices in 𝑉 represent movies, and an edge represents that an actor participated in a

movie. The results are shown in Figure 13b. As can be seen, the dense subgraph 𝐷
3,2 is a densely-

connected community #1, containing multiple movies from the ‘H20’ series and their leading

actors. Bitruss 𝐵
18
is a smaller community #2. Comparatively, the densities of community #1 and

community #2 are 5.352 and 5.292, respectively, so community #1 in 𝐷
3,2 is denser and larger than

community #2 in 𝐵
18
. For the core subgraph, its 𝐶

4,4 forcibly splits community #1 and merges it

with community #2, which clearly is an unreasonable community division. Once again, this result

further demonstrates that the (𝛼, 𝛽)-dense subgraph is density-based with the desirable properties,

i.e., tightly connected internally and sparsely connected to the outside.
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7 Related Works

Cohesive subgraph model in bipartite graphs. In the literature, there are various types of

cohesive models for bipartite graphs. A fundamental model is the biclique [1, 20, 23, 26, 27, 36, 41],

which is a complete bipartite subgraph but is often too strict for real-world networks. Relaxedmodels

like the 𝑘-biplex [15, 37, 38], and quasi-biclique [21, 24, 31] allow for controlled incompleteness,

making them more practical. However, computing bicliques or these relaxed bicliques is NP-hard,

implying that no polynomial-time algorithm exists unless P=NP. Besides clique-based models,

there are also butterfly-based models like the 𝑘-bitruss [29, 30, 35, 42]. This model decomposes

graphs using butterfly structures ((2, 2)-complete graph) to measure local density. The degree-based

(𝛼, 𝛽)-core [12, 17, 19, 22, 25], despite being computationally efficient, often fails to reflect the

density structure as it relies on degree constraints. This paper introduces the (𝛼, 𝛽)-dense subgraph,
a novel density-based model that can accurately capture density structure. It is computationally

efficient and suitable for large bipartite graphs.

Dense subgraph model in unipartite graphs. In unipartite graphs, Tatti [32] proposed the

locally-dense decomposition based on the densest subgraph, which can identify all locally-dense

subgraphs in the graph and designed an algorithm with a time complexity of 𝑂(∣𝑉 ∣2∣𝐸∣). Later,
Danisch et al. [16] designed a convex optimization algorithm to accelerate the computation of

locally-dense decomposition. Besides locally-dense decomposition, Qin et al. [28] introduced the

concept of locally-densest subgraph, which can identify the densest subgraph in different regions

of the graph. Subsequently, Trung et al. [33] proposed a verification-free method to accelerate

the computation of locally-densest subgraphs. Density decomposition, which we base on in this

paper, was initially proposed by Borradaile et al. [10], who presented an algorithm with a time

complexity of 𝑂(∣𝐸∣2) to compute the density decomposition. All the above decomposition models

are for unipartite graphs. To the best of our knowledge, there is no density-based decomposition

for bipartite graphs. Our work is the first to propose density decomposition for bipartite graphs.

8 Conclusion
In this paper, we propose a novel dense subgraph model on bipartite graphs called (𝛼, 𝛽)-dense
subgraph. We show that all the (𝛼, 𝛽)-dense subgraphs form a hierarchical decomposition of a

bipartite graph. We theoretically explore the relationship between (𝛼, 𝛽)-dense subgraphs and core

subgraphs, proposing the Sandwich Theorem and demonstrating the theoretical advantages of our

dense subgraphs over the traditional core subgraphs. Then, we develop three new algorithms to

compute the (𝛼, 𝛽)-dense subgraph. Among them, the fastest DSS++ algorithm utilizes a nontrivial

network flowmethod and a carefully-designed core pruning technique, reducing the time complexity

to𝑂(∣𝐸∣+∣𝐸(𝑅)∣1.5). Subsequently, we propose two algorithms for computing density decomposition.

The DD+ algorithm employs a novel divide-and-conquer strategy to iteratively reduce the graph

size, bringing the time complexity down to 𝑂(𝑝 ⋅ log𝑑
max

⋅ ∣𝐸∣1.5). Extensive experiments and case

studies demonstrate the effectiveness of the (𝛼, 𝛽)-dense subgraph model and the high efficiency

and scalability of the proposed algorithms. There are several future directions deserving further

investigation. First, in the case of dynamic bipartite graphs, an interesting problem would be to

maintain the density decomposition in dynamic graphs. Second, it would be valuable to explore

the parallel or distributed algorithms for computing the density decomposition of bipartite graphs.

Acknowledgments
This work was supported by NSFC Grants U2241211. Rong-Hua Li is the corresponding author of

this paper.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 30. Publication date: February 2025.



30:24 Yalong Zhang, et al.

References
[1] Gabriela Alexe, Sorin Alexe, Yves Crama, Stephan Foldes, Peter L. Hammer, and Bruno Simeone. 2004. Consensus

algorithms for the generation of all maximal bicliques. Discret. Appl. Math. 145, 1 (2004), 11–21.
[2] Mohammad Allahbakhsh, Aleksandar Ignjatovic, Boualem Benatallah, Amin Beheshti, Elisa Bertino, and Norman Foo.

2013. Collusion Detection in Online Rating Systems. In APWeb (Lecture Notes in Computer Science, Vol. 7808). 196–207.
[3] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawla, Gautam Das, and Cong Yu. 2009. Group Recommendation:

Semantics and Efficiency. Proc. VLDB Endow. 2, 1 (2009), 754–765.
[4] Reid Andersen. 2010. A local algorithm for finding dense subgraphs. ACM Trans. Algorithms 6, 4 (2010), 60:1–60:12.
[5] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. 1980. A general method for solving divide-and-conquer

recurrences. SIGACT News 12, 3 (1980), 36–44.
[6] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. CopyCatch:

stopping group attacks by spotting lockstep behavior in social networks. In 22nd International World Wide Web
Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013. International World Wide Web Conferences Steering

Committee / ACM, 119–130.

[7] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. CopyCatch:

stopping group attacks by spotting lockstep behavior in social networks. InWWW. 119–130.

[8] Ivona Bezáková. 2000. Compact representations of graphs and adjacency testing. (2000).

[9] Markus Blumenstock. 2016. Fast Algorithms for Pseudoarboricity. In ALENEX. 113–126.
[10] Glencora Borradaile, Theresa Migler, and Gordon T. Wilfong. 2019. Density decompositions of networks. J. Graph

Algorithms Appl. 23, 4 (2019), 625–651.
[11] Lucas Augusto Montalvão Costa Carvalho and Hendrik Teixeira Macedo. 2013. Users’ satisfaction in recommendation

systems for groups: an approach based on noncooperative games. In WWW. 951–958.

[12] Monika Cerinsek and Vladimir Batagelj. 2015. Generalized two-mode cores. Soc. Networks 42 (2015), 80–87.
[13] Jiujian Chen, Kai Wang, Ronghua Li, Hongchao Qin, Xuemin Lin, and Guoren Wang. 2024. Maximal Biclique

Enumeration: A Prefix Tree Based Approach. In 40th IEEE International Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024. IEEE, 2544–2556.

[14] Francesco Colace, Massimo De Santo, Luca Greco, Vincenzo Moscato, and Antonio Picariello. 2015. A collaborative

user-centered framework for recommending items in Online Social Networks. Comput. Hum. Behav. 51 (2015), 694–704.
[15] Qiangqiang Dai, Rong-Hua Li, Donghang Cui, Meihao Liao, Yu-Xuan Qiu, and Guoren Wang. 2024. Efficient Maximal

Biplex Enumerations with Improved Worst-Case Time Guarantee. Proc. ACM Manag. Data 2, 3 (2024), 135.
[16] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale Density-friendly Graph Decomposition

via Convex Programming. InWWW. 233–242.

[17] Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient Fault-Tolerant Group Recommendation

Using alpha-beta-core. In CIKM. 2047–2050.

[18] Jagadeesh Gorla, Neal Lathia, Stephen Robertson, and Jun Wang. 2013. Probabilistic group recommendation via

information matching. InWWW. 495–504.

[19] Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021. Exploring cohesive subgraphs with vertex

engagement and tie strength in bipartite graphs. Inf. Sci. 572 (2021), 277–296.
[20] Dorit S. Hochbaum. 1998. Approximating Clique and Biclique Problems. J. Algorithms 29, 1 (1998), 174–200.
[21] Dmitry I. Ignatov. 2019. Preliminary Results on Mixed Integer Programming for Searching Maximum Quasi-Bicliques

and Large Dense Biclusters. In ICFCA (CEUR Workshop Proceedings, Vol. 2378). 28–32.
[22] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2019. Efficient (a,𝛽)-core Computation:

an Index-based Approach. InWWW. 1130–1141.

[23] Guimei Liu, Kelvin Sim, and Jinyan Li. 2006. Efficient Mining of Large Maximal Bicliques. In DaWaK (Lecture Notes in
Computer Science, Vol. 4081). 437–448.

[24] Xiaowen Liu, Jinyan Li, and Lusheng Wang. 2008. Quasi-bicliques: Complexity and Binding Pairs. In COCOON (Lecture
Notes in Computer Science, Vol. 5092). 255–264.

[25] Wensheng Luo, Qiaoyuan Yang, Yixiang Fang, and Xu Zhou. 2023. Efficient Core Maintenance in Large Bipartite

Graphs. Proc. ACM Manag. Data 1, 3 (2023), 208:1–208:26.
[26] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren Zhou. 2020. Maximum Biclique Search

at Billion Scale. Proc. VLDB Endow. 13, 9 (2020), 1359–1372.
[27] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E. Tsourakakis, and Shen Chen Xu. 2015. Scalable

Large Near-Clique Detection in Large-Scale Networks via Sampling. In KDD. 815–824.
[28] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest Subgraph Discovery. In KDD. 965–974.
[29] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense Subgraph Discovery. In WSDM,

Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (Eds.). 504–512.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 30. Publication date: February 2025.



Density Decomposition of Bipartite Graphs 30:25

[30] Jessica Shi and Julian Shun. 2022. Parallel Algorithms for Butterfly Computations. InMassive Graph Analytics, David A.
Bader (Ed.). Chapman and Hall/CRC, 287–330.

[31] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu. 2009. Mining maximal quasi-bicliques: Novel

algorithm and applications in the stock market and protein networks. Stat. Anal. Data Min. 2, 4 (2009), 255–273.
[32] Nikolaj Tatti. 2019. Density-Friendly Graph Decomposition. ACM Trans. Knowl. Discov. Data 13, 5 (2019), 54:1–54:29.
[33] Tran Ba Trung, Lijun Chang, Nguyen Tien Long, Kai Yao, and Huynh Thi Thanh Binh. 2023. Verification-Free

Approaches to Efficient Locally Densest Subgraph Discovery. In ICDE. 1–13.
[34] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. Unifying user-based and item-based collaborative filtering

approaches by similarity fusion. In SIGIR. 501–508.
[35] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2022. Towards efficient solutions of bitruss decompo-

sition for large-scale bipartite graphs. VLDB J. 31, 2 (2022), 203–226.
[36] Jianye Yang, Yun Peng, Dian Ouyang, Wenjie Zhang, Xuemin Lin, and Xiang Zhao. 2023. (p,q)-biclique counting and

enumeration for large sparse bipartite graphs. VLDB J. 32, 5 (2023), 1137–1161.
[37] Kaiqiang Yu, Cheng Long, Shengxin Liu, and Da Yan. 2022. Efficient Algorithms for Maximal k-Biplex Enumeration. In

SIGMOD. 860–873.
[38] Kaiqiang Yu, Cheng Long, Deepak P, and Tanmoy Chakraborty. 2023. On Efficient Large Maximal Biplex Discovery.

IEEE Trans. Knowl. Data Eng. 35, 1 (2023), 824–829.
[39] Quan Yuan, Gao Cong, and Chin-Yew Lin. 2014. COM: a generative model for group recommendation. In KDD.

163–172.

[40] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler, and Michael A. Langston. 2014. On

finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data

types. BMC Bioinform. 15 (2014), 110.
[41] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler, and Michael A. Langston. 2014. On

finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data

types. BMC Bioinform. 15 (2014), 110.
[42] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. In DASFAA (Lecture Notes in Computer Science,

Vol. 9643). 218–233.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 30. Publication date: February 2025.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Theoretical Relation to (,)-core
	4 Dense Subgraph Search Algorithms
	4.1 The BFS-based Algorithm: DSS
	4.2 The Flow-Based Algorithm: DSS+
	4.3 The Improved Flow-Based Algorithm: DSS++

	5 Density Decomposition Algorithms
	5.1 The Basic Algorithm: DD
	5.2 The Improved Algorithm: DD+

	6 Experiments
	6.1 Performance Studies
	6.2 Case Studies

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

